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Preface

This booklet is essentially an extended English version of a course I
taught at the Max Planck Institute for Plasma Physics in Garching/
Munich for physicists and graduate students working at the Institute
and for the nearby Physics Department of the Technical University.

It covers mostly applications of particle optics which I have designed,
built and worked with myself during my career, such as mass spectrom-
etry, focusing of ion beams, emission microscopy, ion and electron beam
systems, in an energy range of less than 20 keV.

It is intended to help physicists who have to design their own appa-
ratus or to help them to better understand instruments they have to
work with.

Some of the subjects described date back quite some time, the oldest
references as far back as the thirties in the last century. And I am
old enough to have met some of those authors personally. But the
booklet also contains some material from my own file which has not
been published previously.

I should like to thank Dr. Dietmar Wagner for his invaluable help
with the manuscript.

Eching, August 2007 Helmut Liebl
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1

Lenses: Basic Optics

Summary. Basic optical formulae are derived, the transfer matrix method is ex-
plained, the lens action of apertures is shown, and emission, immersion and einzel
lenses are treated.

A lens is characterized by the property that it imparts to a ray (particle
trajectory) passing through it a deflection (∆r′) which is proportional
to the distance r1 from the axis, at which the ray passes, but which
is independent of the original slope r′1. For thin lenses this deflection
may be assumed to be a sharp kink, occurring at the single principal
plane P . If the entrance side – left of P – is designated by the index 1,
and the exit side – right of P – by the index 2, one can write that the
exit distance r2 equals the entrance distance r1 (Fig. 1.1):

r1 = r2 , (1.1)
and the exit slope r′2 equals the entrance slope r′1 plus the (negative)
change of slope ∆r′:

r′2 = r′1 + ∆r′ . (1.2)
As stated above, −∆r′ = cr1, where c is the proportionality constant.
It can be derived from the special case that the exit ray is parallel to
the axis:

r′2 = 0, r′1 = −∆r′ = cr1, (1.3)

c =
−∆r′

r1
=

1
f1

. (1.4)

In this case (Fig. 1.2) the entrance ray crosses the axis at the distance
f1 from P ; f1 is the entrance focal length of the lens, F1 the entrance
focal plane. Equation (1.2) can now be written as

r′2 = r′1 −
r1

f1
. (1.5)
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Fig. 1.1. Principle of a lens: A trajectory crossing the lens at distance r1 from the
z-axis is deflected by an angle ∆r′ which is proportional to r1

Fig. 1.2. Trajectories starting from the axis point F – the focal point – leave the
lens parallel to the z-axis. The distance of the focal plane F1 to the lens plane P is
the focal length f1

Equations (1.1) and (1.5) can be written in matrix form(
r
r′

)
2

=
(

1 0
− 1

f1
1

) (
r
r′

)
1

= ML

(
r
r′

)
1

, (1.6)

ML is called the transfer matrix of the lens.
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The transfer matrix is

ML =
(

a11 a12

a21 a22

)

with the coefficients

a11 = 1,
a12 = 0,
a21 = −1/f1,

a22 = 1.

In explicit form one has

r2 = a11r1 + a12r
′
1,

r′2 = a21r1 + a22r
′
1.

This, with the above coefficients for a lens, yields (1.1) and (1.5).
Another way of describing the action of a lens is in the form of the

exit equation of the ray in the z–r coordinate system (Fig. 1.3):

r = ar′1 + zr′2 = ar′1 + z

(
r′1 −

r1

f1

)
,

where a is the distance of the object point A from P . With r1 = ar′1
we have

r =
[
a + z

(
1 − a

f1

)]
r′1. (1.7)

Fig. 1.3. The object point A is imaged to a virtual image point B if a < f1
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Fig. 1.4. Imaging of an extended object through a lens to a real image

The distance of the image point B – the point where the exit ray crosses
the axis – from P, i.e. the image distance b, is obtained from (1.7) with
r = 0:

a + b

(
1 − a

f1

)
= 0.

By dividing it by ab, this yields the familiar lens equation

1
a

+
1
b

=
1
f1

. (1.8)

For a < f1, as in Fig. 1.3, the image distance b is negative, i.e. the
image is virtual.

For lenses, where the particle energy is the same on both the en-
trance and exit side, the focal lengths are also the same on both sides:

f2 = f1 = f. (1.9)

For the imaging of an extended object (Fig. 1.4) the same rules apply
as in light optics:

lateral magnification: M =
s2

s1
=

b

a
, (1.10)

angular magnification:
r′2
r′1

=
1
M

. (1.11)

Electrostatic lenses are generally thick lenses which have two princi-
pal planes P1 and P2, and these are usually interchanged as shown in
Fig. 1.5.

1.1 Simple Transfer Matrices

The transfer matrix of a lens has been introduced above. Transfer ma-
trices become very useful when composite optical systems consisting
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Fig. 1.5. Schematic of electrostatic lens with interchanged principal planes P1

and P2

Fig. 1.6. Drift space without deflection

of several elements in tandem are to be treated. Frequently, just one
property of the composite system is of interest, e.g. the magnification,
and therefore only one of the matrix coefficients needs to be calculated,
which can often be done very quickly with the aid of a hand calculator.
The simplest transfer matrix is that of a drift space (Fig. 1.6).

From the figure one can see immediately that

r2 = r1 + L r′1, (1.12)
r′2 = r′1, (1.13)

or in transfer matrix form(
r
r′

)
2

=
(

1 L
0 1

) (
r
r′

)
1

= MD

(
r
r′

)
1

. (1.14)

When two optical elements are combined in tandem, their respective
transfer matrices have to be multiplied. For the combination of a lens
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Fig. 1.7. Combination of einzel lens with drift space

and a drift space (Fig. 1.7) one has therefore to multiply the transfer
matrices of the lens and the drift space:(

r
r′

)
3

=
(

b11 b12

b21 b22

)
︸ ︷︷ ︸
drift space

(
r
r′

)
2

=
(

b11 b12

b21 b22

)
︸ ︷︷ ︸
drift space

(
a11 a12

a21 a22

)
︸ ︷︷ ︸

lens

(
r
r′

)
1

,

(
r
r′

)
3

=
(

c11 c12

c21 c22

) (
r
r′

)
1

. (1.15)

The coefficients cik are found according to the scheme

cik =
2∑

s=1

bisask, i, k = 1, 2,

or explicitely

c11 = b11a11 + b12a21,

c12 = b11a12 + b12a22,

c21 = b21a11 + b22a21,

c22 = b21a12 + b22a22.

In our example, we have with (1.14),

b11 = 1, b12 = L,

b21 = 0, b22 = 1.



www.manaraa.com

1.2 Passage of Charged Particles Through a Uniform Electrostatic Field 7

With these and the coefficients of the lens transfer matrix, one then
obtains

c11 = 1 − L

f
, c12 = L,

c21 = − 1
f

, c22 = 1.

Explicitly, this reads

r2 = r1 + L

(
r′1 −

r1

f

)
,

r′2 = r′1 −
r1

f
.

When the sequence of the two elements is reversed, i.e. drift space
followed by lens, the aiks and biks are interchanged. This yields

c∗11 = a11b11 + a12b21,

c∗12 = a11b12 + a12b22,

c∗21 = a21b11 + a22b21,

c∗22 = a21b12 + a22b22,

c∗11 = 1, c∗12 = L,

c∗21 = − 1
f

, c∗22 = 1 − L

f
.

1.2 Passage of Charged Particles Through
a Uniform Electrostatic Field

Figure 1.8 shows the important case where a charged particle is acceler-
ated through a uniform field between the equipotential planes denoted
P1 and P2. The spaces to the left of P1 and right of P2 are field free and
have the potentials V1 and V2. The potentials are counted from where
the charged particles have zero energy so that their kinetic energy in
flight direction at any point in space with the potential Vi is eVi.

In this simple case the differential equations of motion can be
straightforwardly integrated and yield the motion of the particle in
the z–r-coordinate system as a function of time t:

m r̈ = 0, mz̈ = eE, z1 = r1 = 0,

ż1 = v1 cos α1, ṙ1 = v1 sin α1, v1 =

√
2e

V1

m
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Fig. 1.8. Acceleration of charged particle through a uniform field

(v1 is the velocity of the particle at energy eV1, m its mass).

ż =
eE

m
t + v1cos α1, z =

eE

2m
t2 + v1cos α1 · t, (1.16)

ṙ = ṙ1 = v1sinα1, r = v1sin α1 · t. (1.17)

By eliminating the time t one obtains the trajectory:

eE

2mv1
t2 + cos α1 · t − z

v1
= 0,

t =
mv1

eE

(√
cos2α1 +

2eE
mv2

1

z − cos α1

)
,

r =
2V1

E
sin α1

(√
E

V1
z + cos2α1 − cos α1

)
. (1.18)

This is the equation of the trajectory within the field. At the end of
the field where z = L, the distance from the z-axis is obtained with

E

V1
=

1
L

(
V2

V1
− 1

)
as

r2 =
2L sin α1

V2
V1

− 1

(√
V2

V1
− sin2α1 − cos α1

)
(1.19)
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The slope of the trajectory at P2 is found by differentiating (1.18) with
respect to z and setting z = L:

r′ =
dr

dz
= sin α1

(
E

V1
z + cos2α1

)−1/2

r′2 = sin α1

(
V2

V1
− sin2α1

)−1/2

. (1.20)

From (1.20) the refractive index for charged particles can be derived:
rewriting r′2 one obtains

r′2 = tan α2 =
sin α2√

1 − sin2α2

,

and putting this into (1.20) yields

sin α2√
1 − sin2α2

=
sin α1√

V2
V1

− sin2α1

,

V2

V1
− sin2α1 =

sin2α1

sin2α2

(
1 − sin2α2

)
=

sin2α1

sin2α2
− sin2α1,

and finally
sinα2

sinα1
=

√
V1

V2
. (1.21)

Note that the distance L does not appear in (1.21).
If one could compress the field to an infinitely narrow double-layer

with the potentials V1 and V2 on either side, one would have the ex-
act analogue to the refraction of light at the interface between two
media with the refractive indices n1 and n2 (Fig. 1.9), where the fa-
miliar law of refraction is valid. Comparing this with (1.21) reveals
that in electrostatic optics the square root of the potential plays the
role of the refractive index n, the difference being that in light optics
sharp interfaces are the rule, while in particle optics one has gradual
transitions of the refractive index. (An example in light optics would
be radially graded fibers in fiber optics.) Another difference of practi-
cal significance is that in electrostatic optics the particle energy and
with its square root the refractive index can vary over many orders of
magnitude, while the variation of the refractive index of transparent
substances stays within half an order of magnitude.

The above equations are valid not only for acceleration (V2 > V1),
but also for deceleration (V2 < V1). In the latter case, the expression
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Fig. 1.9. Refraction of charged particle trajectories (a) compared to that of light (b)

under the square root of (1.19) and (1.20) may become negative, when
V2/V1 < sin2α1, and the exit ordinate r2 becomes imaginary. The phys-
ical meaning of this is that the particle does not reach the exit plane
P2 but is reflected before it. This case can be treated by expressing the
abscissa z of the flying particle as a function of the ordinate r; i.e. by
reversing (1.18).

One can obtain this directly by substituting the time t in (1.16) by
t from (1.17). The result is

z =
E

4V1

r2

sin2α1
+

r

tan α1
. (1.22)

This is the equation of the parabolic trajectory shown in Fig. 1.10 of the
particle reflected in the decelerating field. Differentiating this equation
with respect to r yields the slope against the r-ordinate:

dz

dr
=

E

2V1

r

sin2α1
+

1
tan α1

. (1.23)

The turning point of the parabola (zmax, rm) is found by setting (1.23)
equal to zero:

rm = −2
V1

E
sin α1cos α1, (1.24)

zmax =
E

4V1

r2
m

sin2α1
+

rm

tan α1
= −V1

E
cos2α1. (1.25)

(The minus sign of these expressions is cancelled by the negative E, see
Fig. 1.10.)

For symmetry reasons, the distance of the point where the particle
leaves the field again is 2rm apart from the point of entrance.
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Fig. 1.10. Reflection of charged particle by a decelerating field

In the special case α1 = 45◦ one obtains

rm = −V1

E
, zmax = − V1

2E
=

rm

2
.

The point of exit in this case is four times zmax apart from the point
of entrance (2rm = 4zmax).

It so happens that in this special case, α1 = 45◦, rm and therefore
2rm have a maximum. This is derived easily by differentiating rm with
respect to α1 and setting the result equal to zero:

∂rm

∂α1
= −2

V1

E

(
cos2α1 − sin2α1

)
= 0, α1 = 45◦.

This means also that the trajectories which have slightly different en-
trance angle variations ∆α1 around α1 = 45◦ (Fig. 1.11) cross each
other and the trajectory with α1 = 45◦ at the distance 2rm. In other
words, the retarding field has focusing properties.

It forms a first-order image of the entrance point at the exit point.
This happens of course only two-dimensionally, viz. in the drawing
plane. The abscissa of the turning point is found by differentiating
zmax, (1.25), with respect to α1:

∂zmax

∂α1
= 2

V1

E
sin α1cos α1, and with α1 = 45◦,∆zmax =

V1

E
∆α1.

Another property of the electrostatic field can be demonstrated here,
i.e. energy dispersion. When rm is differentiated with respect to the
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Fig. 1.11. Focusing properties of decelerating field

Fig. 1.12. Energy dispersion of decelerating field

particle energy eV1 one obtains from (1.24) (Fig. 1.12)

∂rm

∂V1
= − 2

E
sin α1cos α1, and with α1 = 45◦, 2∆rm = − 2

E
∆V1.

(1.26)



www.manaraa.com

1.3 Transfer Matrix of the Uniform Field 13

The variation of zmax is found by differentiating it with respect to V1

(1.25):

∂zmax

∂V1
= −cos2α1

E
, and with α1 = 45◦,∆zmax = − 1

2E
∆V1 =

∆rm

2
.

The uniform electrostatic field is a simple yet instructive example to
demonstrate the focusing and dispersive properties of an electrostatic
field, which can be derived in a few lines from first principles. In the
examples to follow the derivation will not be presented but was found
by the same means.

1.3 Transfer Matrix of the Uniform Field

Equations (1.19) and (1.20) represent a rigorous description of the tra-
jectory’s exit ordinate and slope after passage through a uniform field.
When considering the paraxial case (α1 � 1, Fig. 1.13) one obtains the
simpler expressions, with sin α1 ≈ r′1, cos α1 ≈ 1, r′1 � V2/V1,

r2 ≈ 2Lr′1
V2
V1

− 1

(√
V2

V1
− 1

)
=

2L√
V2
V1

+ 1
r′1, (1.27)

r′2 ≈
√

V1

V2
r′1, (1.28)

In the general case, with r1 �= 0, one has therefore

r2 = r1 +
2L√
V2
V1

+ 1
r′1,

r′2 =
√

V1

V2
r′1,

Fig. 1.13. Paraxial case of acceleration of charged particle through a uniform field
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or in matrix form(
r
r′

)
2

=

(
1 2L√

V1/V2+1

0
√

V1/V2

) (
r
r′

)
1

= MF

(
r
r′

)
1

.

The transfer matrix coefficients of the uniform electrostatic field are
thus

a11 = 1, a12 =
2L

1 +
√

V2
V1

,

a21 = 0, a22 =
√

V1

V2
.

This is valid not only for acceleration (V2/V1 > 1), but also for decel-
eration (V2/V1 < 1). For the case of mere drift (V2/V1 = 1) the matrix
coefficients for a drift space (1.14) result.

1.4 Acceleration of Charged Particles Emitted
from a Planar Surface

A special case of practical importance is the acceleration of charged par-
ticles emitted or reflected from a planar conducting surface (Fig. 1.14).

When a charged particle leaves the surface with energy eV1 and is
accelerated by the voltage Va it will leave the uniform acceleration field
with energy e(V1+Va). With this definition, (1.19) and (1.20) now read,
since V2 = V1 + Va,

r2 = 2L
V1

Va
sin α1

(√
Va

V1
+ cos2α1 − cos α1

)
, (1.29)

r′2 = sin α1

(
Va

V1
+ cos2α1

)−1/2

. (1.30)

Fig. 1.14. Acceleration of charged particles emitted from planar conducting surface
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For particles leaving the surface at a glancing angle (α1 = 90◦) the
maximum values of r2 and r′2 are obtained:

r2m = 2L
√

V1

Va
, (1.31)

r′2m =
√

V1

Va
. (1.32)

The virtual starting point of these particles is located at the distance
r2m/r′2m = 2L behind the end of the uniform field, i.e. at the distance L
behind the surface. This holds exactly for any positive value of V1/Va.

In most practical cases the acceleration voltage Va is large in com-
parison to the starting voltage V1. With this condition (1.29) and (1.30)
become

r2 ≈ 2L
√

V1

Va
sin α1, (1.33)

r′2 ≈
√

V1

Va
sinα1. (1.34)

The virtual starting point is found as above by forming r2/r
′
2. Since

α1 cancels out, the virtual starting point is now also located at the
distance L behind the surface for any starting angle, but only in first
approximation for Va � V1 (Fig. 1.15).

After the acceleration the trajectories are paraxial (r′2 � 1). An ex-
tended emitting surface element of dimension D1 is imaged to a virtual
surface element of dimension D2 = D1, i.e. the magnification is unity.

Fig. 1.15. Virtual imaging of surface emitting charged particles by accelerating
field
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Fig. 1.16. Electrostatic field between concentric spherical equipotential surfaces

1.5 Transfer Matrix of Electrostatic Field Between
Spherical Concentric Equipotential Surfaces

The case of charged particles passing through a field between concentric
spherical equipotential surfaces with the radii R1 and R2 (Fig. 1.16)
has also some practical importance, particularly for electron or ion
sources [1]. The paraxial transfer matrix is therefore presented here,
but without derivation [2]:(

r
r′

)
2

=

(
R2
R1

(1 − k1) R2k1
1

R1
(1 − k1 − k2) k1 + k2

) (
r
r′

)
1

with the abbreviations

k1 = 2
1 − R1/R2

1 +
√

V2/V1

and k2 =
R1

R2

√
V1

V2
.

This is also valid for acceleration (V2/V1 > 1), drift (V2/V1 = 1) or
deceleration (V2/V1 < 1). From the above matrix coefficients those of
the uniform field can be derived by performing the transitions R1, R2 →
∞ and R2 − R1 = L.

1.6 Acceleration of Charged Particles Emitted
from a Spherical Surface

A practical example of acceleration of charged particles from a spherical
surface are tip sources of electrons or ions (Fig. 1.17). In these cases
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Fig. 1.17. Acceleration of charged particles between concentric spherical emitting
and accelerating equipotential surfaces

the acceleration energy eVa is usually large in comparison to the initial
energy eV1.

Furthermore, the tip radius Rt is small in comparison to the distance
of the acceleration electrode, the shape of which is then unimportant
because the main acceleration takes place within a distance of a few
tip radii in the field determined solely by the tip. Under these con-
ditions, the trajectories of particles starting at a glancing angle from
the surface have after acceleration by Va a slope of 2

√
V1/Va against

the surface normal, as compared to
√

V1/Va in the planar case (comp.
(1.32)), and the virtual starting point lies at the distance Rt/2 behind
the emitting surface. Thus, the emitting surface is imaged to a virtual
surface having the radius Rt/2. But more significant is the fact that all
trajectories with maximum slope 2

√
V1/V2 to the normal of their start-

ing points, when extended backwards to the center of the semi-sphere,
have a distance of Rt

2 2
√

V1
Va

= Rt

√
V1
Va

from the center. Therefore, this
appears as the virtual source radius. In this way, microsources can be
realized by simple means. For example thermionically emitted particles
have initial energies of less than 1 eV, so with an acceleration voltage of
10 kV the virtual source radius is 100 times smaller than the tip radius.
All of this is of course valid only when the acceleration voltage is not
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screened by a Wehnelt electrode, which would drastically alter the field
around the tip.

1.7 Passage of Charged Particles Through
an Electrode with Round Aperture

In practice, an acceleration field such as shown in Fig. 1.15 is termi-
nated by a planar electrode with an aperture centered to the axis for
passage of the accelerated particles (Fig. 1.18). This aperture causes the
equipotential surfaces to bulge through it towards the field-free space.

When the field strength is considered near the hole, one sees that
a radial component Er is present acting so as to deflect the particles
away from the axis.

It can be shown that this round opening acts as a lens [3]: We
place a fictitious cylinder axially through the hole so that its left end
protrudes to the region of the undisturbed uniform field, while its right
end reaches into the field free space. From the conservation of field line
flux we obtain, there being no space charge,

r2πEa + 2rπ
∫ +b

−a
Erdz = 0 , rEa + 2

∫ +b

−a
Erdz = 0. (1.35)

A charged particle passing from the left at the distance r from the axis
experiences a radial momentum:

mvr = −
∫

eEr dt = − e

vz

∫ +b

−a
Er dz, (1.36)

Fig. 1.18. Diverging action of aperture terminating an acceleration field
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Fig. 1.19. Derivation of lens action of an aperture terminating an acceleration field

whereby vz = dz/dt,dt = dz/vz was substituted. Since the trajectory
is paraxial, vz can be considered constant. Substituting the integral
from (1.35) we obtain

mvr =
er

2vz
Ea. (1.37)

The trajectory suffers a kink ∆r′ (Fig. 1.20) given by, with (1.37), ∆r′ =
vr/vz = erEa/2mv2

z . With mv2
z/2 = eV , the particle energy, we then

obtain
∆r′ =

Ea

4V
r.

The trajectory deflection ∆r′ thus is proportional to the distance from
the axis. This is the characterization of a lens. The focal length is given
by (comp. (1.4))

−f =
r

∆r′
=

4V
Ea

. (1.38)

As in most practical cases the acceleration energy eVa is large in com-
parison with the initial particle energy, one can replace the particle
energy at the aperture eV by eVa, and thus Ea = Va/L (see Fig. 1.18).
This yields

−f = 4L (1.39)

The aperture acts as a diverging lens with the focal length −4L [4].
A particle starting off-axis from point A normal to the surface ap-

pears to have started on the axis at a distance of 3L behind the emit-
ting surface (Fig. 1.18). The virtual surface located at the distance L
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Fig. 1.20. Deflection of trajectories passing through the aperture

Fig. 1.21. Imaging of emitting surface by accelerating field and aperture

behind the emitting surface (Figs. 1.15 and 1.21) is imaged to a distance
of 4/3L to the left of the aperture, i.e. to a distance of L/3 behind the
emitting surface.

This can easily be derived geometrically (see Fig. 1.21) or by calcu-
lation with the lens formula (1.8):

1
b

= − 1
4L

− 1
2L

= − 3
4L

, b = −4
3
L.

The magnification is sb/sa = 4
3L/2L = 2/3.
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For particles with initial energy eV1, the beam radius at the aperture
is with (1.31), rB = ra+2L

√
V1/Va and the maximum beam angle αmax

after passage through the aperture is, with (1.32) and (1.39),

αmax =
√

V1

Va
+

rB

4L
.

These values are important to know when designing acceleration optics
without obstructing parts of the beam by electrodes.

The combination: uniform field followed by an aperture, can be
treated very simply and conveniently by forming the product of the
transfer matrices for the uniform field with that for a lens (1.6):

MFML ≡
(

1 2L√
V2/V1+1

0
√

V1/V2

) (
1 0

− 1
f2

1

)

=

⎛
⎝ 1 2L√

V2/V1+1

− 1
f2

− 1
f2

2L√
V2/V1+1

+
√

V1
V2

⎞
⎠ ≡ MFL.

The focal length f2 is that of the aperture according to (1.39).

1.8 General Aperture

Equation (1.39) is just a special case of the general formula for the lens
effect of an aperture separating two regions of different field strengths
(Fig. 1.22) [4]:

f =
4Va

E2 − E1
, (1.40)

where Va is the voltage of the aperture (particle energy = eVa) mea-
sured against the particle source (zero particle energy), and E1 and E2

are the field strengths on both sides of the aperture. The signs of the
field strengths are defined such that a positive field strength acceler-
ates and a negative field strength decelerates. Thus for E1 > E2 the
focal length is negative, meaning a diverging lens (as in the case above,
where E2 = 0), while for E1 < E2 the aperture acts as a converging
lens, f being positive.

Various cases are possible, shown schematically in Fig. 1.23. Cases
(a) to (e) are diverging lenses, cases (f) to (k) are converging lenses.
Note that all cases, where the curvature of the kink in the potential
curve as seen from the zero potential side is concave, are diverging
lenses, while those with a convex curvature are converging lenses.
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Fig. 1.22. General aperture lens

The transfer matrix of such an aperture is thus (comp. (1.6))(
r
r′

)
2

=
(

1 0
E1−E2

4Va
1

) (
r
r′

)
1

. (1.41)

The properties of lenses composed of more than one aperture can be
calculated by transfer matrix multiplication.

The arrangement shown in Fig. 1.24 can be characterized by the
matrix product of the transfer matrices: first aperture × uniform field
× second aperture. The particles have different energies before and be-
hind the arrangement, viz. eV1 and eV2, which is termed an “immersion
lens”. This notation is chosen in analogy to light optics, where it char-
acterizes a lens with different indices of refraction in front and behind
the lens. The arrangement shown in Fig. 1.25 is characterized by the
matrix product of five transfer matrices:

first aperture × first uniform field × second aperture × second uni-
form field × third aperture.

It represents a so-called einzel lens when the particle energy is the
same before and behind the lens, eV3 = eV1.

In this way, the lens properties, such as focal lengths and position
of principal planes, can be calculated.

When V3 is different from V1, one has a three-aperture immersion lens
(Fig. 1.25).Whilewithatwo-aperture immersion lens the focal lengthsare
fixed for a given V2/V1 ratio, a three-aperture immersion lens opens the
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Fig. 1.23. Various cases of aperture lenses: (a) to (e) diverging lenses, (f) to (k)
converging lenses

Fig. 1.24. Uniform field between two aperture lenses, constituting an “immersion
lens”
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Fig. 1.25. Combination of three apertures and two fields constituting an einzel lens
(V3 = V1) or an immersion lens (V3 �= V1)

possibility of adjusting the focusing action for any ratio V3/V1 by varying
V2. Such lenses are electrostatic “zoom lenses”.

It should be noted that by this simple method of calculating lenses
good results are obtained only when the aperture diameters are small
in comparison to the distances between the apertures. Otherwise, the
fields between the apertures are not uniform and the axial potentials
in the aperture differ too much from the potential applied to the aper-
ture electrodes. This restriction for the applicability of (1.40) can be
expressed as L � ∆V/E, which expression should hold for either side
of an aperture where a field exists. ∆V means the potential difference
to either next aperture electrode.

When the above condition is not met, i.e. when the aperture diame-
ter is larger, the formula is still applicable with reasonably good results,
when for the Va not the potential of the aperture but for the axis point
within the aperture is taken. Because of field penetration these two
differ the more the larger the aperture diameter is in relation to the
distances of the neighboring apertures. This is the case in particular
when Va has a maximum or a minimum.

1.9 Passage of Charged Particles Through
an Electrode with Slotted Aperture

When the aperture in an electrode separating spaces of different field
strength is not circular but a slot (Fig. 1.26), such that its width
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Fig. 1.26. Slotted aperture between different fields

(y-direction) is small in comparison to its length (x-direction), the lens
action is only in the y-direction.

The formula for the focal length (comp. (1.40)) is then

f =
2Va

E2 − E1
. (1.42)

The lens action is twice as strong as that of a circular aperture, but
occurs only in one azimuthal direction.

In the x-direction no focusing of the trajectories occurs but only
a variation of the incremental change of the refractive index. Parallel
trajectories continue being parallel (Fig. 1.27).

In case the particles emitted from a planar surface are accelerated
through a slotted electrode (Fig. 1.28), the defocusing by the slot has
to be taken into account. Its focal length is (for V1 � Va)

−f =
2Va

E
= 2L. (1.43)

The virtual subject located at the distance L behind the emitting sur-
face is now imaged to the emitting surface itself with the magnification
rb/ra = 1/2.

The beam radius at the aperture is of course the same as with a
round aperture

rB = ra + 2L
√

V1

Va
,
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Fig. 1.27. Action of slotted aperture between different fields: (a) lens action, (b)
bending of trajectories

Fig. 1.28. Imaging of emitting surface by acceleration field and slotted aperture

but the maximum beam angle in the direction of the lens action is now

αmax =
√

V1

Va
+

rB

2L
.

1.10 Emission Lenses

The usual requirement in dealing with charged particles emitted from
a surface is to form them into a beam with a certain energy and shape,
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Fig. 1.29. Emission lens with two different modes of operation

or to form an image of the surface with them. This is done with an
emission lens (for electrons also called cathode lens).

The simplest emission lens is obtained by adding a second apertured
electrode to the acceleration electrode (Fig. 1.29).

The two electrodes with their apertures constitute an immersion
lens. Together with the uniform acceleration field they form the emis-
sion lens. The lens can be treated by multiplying the matrix for the
first aperture lens with that of the combination: field along L2 plus
second aperture lens

M =
(

m11 m12

m21 m22

)
=

(
1 0

− 1
f1

1

) ⎛
⎝ 1 2L2√

V2/V1+1

− 1
f2

√
V1
V2

− 1
f2

2L2√
V2/V1+1

⎞
⎠ ,

where the focal lengths f1 and f2 of the two apertures are given by

− 1
f1

=
E1 − E2

4V1
=

V1

4L1V1
− V2 − V1

4L2V1
=

1
4L1

− 1
4L2

(
V2

V1
− 1

)
,

(1.44)

− 1
f2

=
E2

4V2
=

V2 − V1

4L2V2
=

1
4L2

(
1 − V1

V2

)
. (1.45)

We obtain

r2 = m11r1 + m12r
′
1, (1.46)

r′2 = m21r1 + m22r
′
1. (1.47)
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The matrix coefficients are found to be

m11 = 1 − 1
f1

2L2√
V2/V1 + 1

= 1 − m12

f1
,

m12 =
2L2√

V2/V1 + 1
,

m21 = − 1
f2

− 1
f1

(√
V1

V2
− 1

f2

2L2√
V2/V1 + 1

)
= − 1

f2
− m22

f1
,

m22 =
√

V1

V2
− 1

f2

2L2√
V2/V1 + 1

=
√

V1

V2
− m12

f2
.

Several options are open to shape the beam for given distances L1 and
L2 by variation of the voltage ratio V1/V2. The value eV2 is the energy
of the beam after passing through the lens.

An important case for beam sources is telescopic imaging (Fig. 1.30),
i.e. particles starting from the surface from different points on paral-
lel trajectories travel again on parallel trajectories after acceleration
through the emission lens. In particular, particle trajectories starting
parallel to the axis are also parallel to the axis after the lens. The
angular spread is then entirely due to the initial energy.

The condition for telescopic imaging is that r′2 be independent of
r1, or in particular that for r′1 = 0 also r′2 = 0. This is the case for

m21 = 0. (1.48)

Fig. 1.30. Telescopic imaging through emission lens by converging–diverging
apertures
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Fig. 1.31. Telescopic imaging through emission lens by diverging–converging
apertures

The emission lens thus has the focal length

f = −1/m21 = ∞.

There are the two solutions, shown in Figs. 1.30 and 1.31, which can
easily be found (with a pocket calculator). For example, with L1 =
L2 = L, (1.48) yields V1/V2 = 0.34 and V1/V2 = 2.8. The first solution
corresponds to Fig. 1.30, where the first aperture acts as a focusing
and the second as a defocusing lens. In the second solution (Fig. 1.31)
the first aperture is a defocusing lens and the second a focusing one.
This is called an accel–decel arrangement because the particles are
accelerated in L1 and decelerated in L2. Comparing the two solutions
one sees that, for a given final beam energy eV2, the field strength in
L1 is much higher in case Fig. 1.31. This can be important when space
charge limitations play a role at the emitting surface. There, a higher
field strength allows a higher emission current density. On the other
hand, for a given beam energy eV2, the voltage V1 required in case
Fig. 1.31 may become prohibitively high causing breakdown problems.

Other beam parameters have also to be considered: the position of
the virtual emitting surface is found with

−a =
(

r2

r′2

)
r1=2L1r′1

=
2L1m11 + m12

m22
. (1.49)
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Table 1.1. Telescopic imaging with emission lens after acceleration field (L1 =
L2 = L)

V1/V2 m11 m12/L m21L m22 L/f1 L/f2 f/L −a/L

0.34 0.82 0.74 0 0.70 0.24 −0.17 ∞ 3.4
2.8 1.51 1.25 0 1.11 −0.41 0.45 ∞ 3.8

Note: These are calculated values for the condition that the aperture diameters are
small compared to the aperture distances. This is rarely the case in practice, but by
making V1 adjustable the condition f = ∞ can be met

The virtual object radius ra is found (Fig. 1.31) from r1 = r0, r′1 = 0
for r′0 = 0:

ra = (r2)r′1=0 = m11r1,
ra

r0
= m11. (1.50)

The maximum beam diameter and aperture angle are obtained with
(1.46) and (1.47) by inserting r′1m =

√
V0/V1 (comp. (1.32)), r1 =

r0 + 2L1r
′
1m:

r2m = m11r0 + (2L1m11 + m12)
√

V0/V1, (1.51)

r′2m = m22

√
V0/V1, (1.52)

where r0 is the radius of the emitting area on the surface.
With the above relations the properties of the emission lens with

telescopic imaging are completely described.
The values of the example L1 = L2 = L are compiled in Table 1.1.
Another important application of an emission lens with two aper-

tured electrodes is emission microscopy, where a magnified image of the
surface is formed by the emitted particles. The condition for imaging
the surface into infinity, in practice to a distance large in compari-
son with L1, L2 is that the trajectories starting from the axis point,
r0 = 0, be parallel to the axis after the emission lens. This yields, with
r1 = 2L1r

′
1,(

r′2
)
r0=0

= m21r1 + m22r
′
1

= 2L1m21r
′
1 + m22r

′
1 = 0, 2L1m21 + m22 = 0. (1.53)

Again, there are, for any ratio L1/L2, two solutions V1/V2 meeting the
above condition (Figs. 1.32 and 1.33). With the same example as above
L1 = L2 = L, these solutions are V1/V2 = 0.18 and V1/V2 = 4.5 [5].

Again, as in telescopic imaging, the second solution represents a
large accel–decel voltage ratio, and the same applies as above.
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Fig. 1.32. Emission microscopy: Imaging of surface to infinity by converging–
diverging apertures

Fig. 1.33. Emission microscopy: Imaging of surface to infinity by diverging–
converging apertures

The focal length of the emission lens is found from the relation (with
r1 = r0, r′1 = r′0 = 0).

f =
r0

r′2
= − 1

m21
. (1.54)

The backfocal plane is where a trajectory starting with r0 �= 0, r′0 = 0
crosses the axis. Its distance from the second electrode of the emission
lens is found from (with r1 = r0, r′1 = r′0 = 0)

g =
(

r2

−r′2

)
r′0=0

=
m11r0

−m21r0
= −m11

m21
. (1.55)
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Table 1.2. Imaging of a planar surface to infinity with a two-aperture emission lens
after the acceleration field (L1 = L2 = L)

V1/V2 m11 m12/L m21L m22 L/f1 L/f2 f/L g/L h/L

0.18 0.47 0.60 −0.28 0.55 0.89 −0.21 3.6 1.7 −1.9
4.5 1.60 1.36 −0.47 0.93 −0.44 0.88 2.1 3.4 1.3

The distance of the principal plane from the second electrode of the
emission lens is h = g − f .

In the backfocal plane all beamlets starting from the individual
points on the surface cross the axis. Therefore, the total beam has
a waist there, the radius of which is given by

r2max = 2L1m11r
′
1m + m12r

′
1m = (2L1m11 + m12)

√
V0

V1
. (1.56)

It is proportional to
√

V0. When an aperture stop is placed in the back-
focal plane eliminating a peripheral part of the beam waist, particles
with higher initial energies are discriminated against, viz. those with
large initial angles α1 (see Fig. 1.15). This is generally applied in emis-
sion microscopy to improve the lateral resolution, which depends on V0.

In practice, the image of the surface is to be formed not in infinity
but at some distance b (� L1, L2). This can be done by making the
focal length f slightly shorter, achievable by adjusting V1/V2, in case
Fig. 1.32 to a slightly smaller, in case Fig. 1.33 to a slightly larger value.
The magnification is given by the ratio M = b/f .

Values for the example L1 = L2 = L are listed in Table 1.2.
When a two-electrode emission lens is used for either of the two

applications outlined above, the ratio V1/V2 is fixed for a given beam
energy and given distances L1 and L2. With it also the field strength
at the emitting surface, E1 = V1/L1, is fixed. More flexibility in the op-
eration of an emission lens is obtained when a third aperture electrode
is added (Fig. 1.34). This has the advantage that the field strength at
the emitting surface can be adjusted to any desired value, within cer-
tain limits, and the beam can be accelerated to any final energy eV3

with adjustable focusing conditions by adjusting the potential V2 of the
second electrode.

The system can be treated as the one above with a transfer matrix.
This is obtained by forming the product of the matrix for the lens of
Fig. 1.29 with that for Fig. 1.21 and proceeding as outlined above for
the two-electrode system. Again, there are in general two solutions, as
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Fig. 1.34. Emission lens with three apertures, two operating modes

indicated in Fig. 1.34. When V1 = V3, the three electrodes act as an
einzel lens (see below).

The treatment of an optical system with the transfer matrices of
uniform fields and aperture lenses is fairly accurate only when the elec-
trodes are planar and parallel and the aperture diameters are small in
comparison with electrode distances. In practice this is frequently not
the case: The electrodes may have to be conical in order to accom-
modate some primary radiation (see Fig. 1.35b), and the bores may be
larger to reduce lens aberrations. This would correspond to a transition
from Fig. 1.35a to b. The axial potential distribution which in Fig. 1.35a
is made up of straight portions and sharp kinks, is in Fig. 1.35b a
smooth curve with only short near-straight portions and gradual bends.
Thus, the lens actions are not sharply localized at the apertures but
more widely distributed along the curvatures of the potential curve.

The first-order optical properties of a system are completely deter-
mined by the axial potential distribution. This is a consequence of the
Laplace equation, divV = 0

(∇2V = 0
)
, which for rotationally sym-

metric systems can be written as

∂2V

∂r2
+

1
r

∂V

∂r
+

∂2V

∂z2
= 0. (1.57)
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Fig. 1.35. Axial potential distributions of two emission lenses with similar optical
properties (comp. Fig. 1.23)

When the axial potential distribution V (z)r=0 is given, the paraxial po-
tential distribution is also fixed through (1.57), and with it the paraxial
(first order) focusing properties of the system.

Thus, even if the electrodes differ considerably, if the axial potential
distribution is similar, so also will be the optical properties of two
systems. A great advantage of particle optics compared to light optics
is the possibility of continuous variation of optical properties by simple
potential variations.

In a triode system such as sketched in Fig. 1.35b with large aper-
tures, the potential V1 in the case V1 < V2 may be adjusted to a very
low or even negative value. It is then frequently called “Wehnelt” elec-
trode. The acceleration from the surface is effected mainly by field
penetration from the second electrode (V2). This causes a very strong
focusing action near the surface such that the beam waist (crossover)
occurs within the acceleration field. In such a “gun” the beam crossover
serves as a source for further imaging and the “Wehnelt” can be used
to control the beam intensity.

1.11 Immersion Lenses

The transfer matrix of an immersion lens composed of two planar aper-
tured electrodes has been given already. In the general case there is no
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Fig. 1.36. Immersion lens with acceleration (V2 > V1) or deceleration (V2 < V1)

field before the first electrode (Fig. 1.36). The focal length of the first
aperture is given by

1
f1

=
1

4L

(
V2

V1
− 1

)
. (1.58)

The matrix coefficients are the same as given earlier except that 1/f1

is different here.
The two possible cases with acceleration (V2/V1 > 1) and deceler-

ation (V2/V1 < 1) are shown in Fig. 1.36. For V2/V1 = 1 the matrix
coefficients become those for a drift space of length L.

Focal length f2 and distance g2 of the focal plane in the V2 space
are given by

f2 = −1/m21, (1.59)
g2 = −m11/m21. (1.60)

The distance of the principal plane from the second electrode is

h2 = g2 − f2 =
1 − m11

m21
=

m12

m21f1
. (1.61)

When (1.59) is carried out, it simplifies to

f2

L
=

4
(√

V2/V1 + 1
)

V1/V2 + V2/V1 − 2
. (1.62)
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Since both V1 and V2 have to be positive to let particles pass through
the apertures, the focal length f is always positive for any ratio V1/V2

(except the trivial case V2 = V1). This can be easily verified by insert-
ing some values of V1/V2 into (1.62) for either V1/V2 < 1 or V1/V2 > 1.
Thus, it is not possible to operate such a lens with telescopic imaging
as the emission lens shown in Fig. 1.30 (acceleration field plus immer-
sion lens). This means that any change of beam energy is linked with
focusing of the beam by the accelerating or decelerating field.

An immersion lens has different focal lengths on the entrance and
exit sides. Since in electrostatic optics particle trajectories are re-
versible, the optical parameters on the entrance side, f1, g1 and h1

can be found simply by applying (1.59)–(1.61) with the inverse values
of V1/V2. For f1 follows from (1.62)

f1

L
=

4
(√

V1/V2 + 1
)

V2/V1 + V1/V2 − 2
. (1.63)

When we form the ratio f2/f1 we find with (1.62) and (1.63)

f2

f1
=

√
V2

V1
. (1.64)

This is a general property of all immersion lenses. It is analogous to
immersion lenses in light optics, where f2/f1 = n2/n1, the ratio of the
refractive indices on both sides.

In practice, immersion lenses are frequently constructed with tubu-
lar electrodes (Fig. 1.37). This has the advantage that in compari-
son with an immersion lens as described above, the lens diameter is
smaller for a given beam diameter. Furthermore, as a consequence of
the smoother axial potential distribution, the spherical image aberra-
tion (aperture aberration) is smaller. The field penetration into the
tubes drops to a negligible value at a depth of about the inner tube
diameter. Thus, this depth must be kept clear of any constructional
elements, which could disturb the field distribution.

The lens properties are determined experimentally or by computa-
tion. A variety of lenses with different geometries have been published
in tabulated form [6–9].

As is shown in Fig. 1.37, the principal planes are always located
on the “slower” side from the end of the lens field. Frequently, par-
ticularly with tubular lenses such as shown in Fig. 1.37, they are also
interchanged, meaning that the trajectories cross P2 before P1.
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Fig. 1.37. Immersion lens with tubular electrodes

Fig. 1.38. Graphic construction of imaging through immersion lens

When the focal lengths and principal planes are known for a given
ratio V1/V2 – their position depends on V1/V2 – then the imaging prop-
erties can be easily found (Fig. 1.38).

Trajectory 1, going through the axis points of P1 and P2, is only
refracted: r′2 = r′1

√
V1/V2 (comp. (1.21)). For trajectory 2, passing
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through the lens at some distance r1 from the axis, we have

r′2 = r′1

√
V1

V1
− r1

f2
, (1.65)

where the first term denotes the refraction and the second the focusing.
The equation of trajectory 1 in the r–z coordinate system (V2-space)
is thus

r (V2) = r1 + zr′2 = r1 + z

(
r′1

√
V1

V2
− r1

f2

)
, (1.66)

and with r1 = ar′1 (a = object distance) and f1/f2 =
√

V1/V2

r (V2) = r′1

[
a + z

√
V1

V2

(
1 − a

f1

)]
. (1.67)

Trajectory 1 crosses the axis (r (V2) = 0) at the distance z = b. This
inserted in (1.67) yields the imaging equation for immersion lenses

1
b

+
√

V1

V2

(
1
a
− 1

f1

)
= 0. (1.68)

The inverse image distance is thus found to be

1
b

=
√

V1

V1

(
1
f1

− 1
a

)
=

1
f2

− 1
a

√
V1

V2
. (1.69)

The magnification is found to be (see Fig. 1.38)

M =
∣∣∣∣rb

ra

∣∣∣∣ =
r′2b
r′1a

=
b

a

√
V1

V2
. (1.70)

From the figure one can extract the relations

ra

a − f1
=

rb

f1
;

rb

b − f2
=

ra

f2
.

This yields
ra

rb
=

a − f1

f1
=

f2

b − f2

and
(a − f1) (b − f2) = f1f2. (1.71)
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Fig. 1.39. Einzel lens built of three planar apertured electrodes

This is another form of the imaging equation. In light optics it is called
Newton’s imaging equation. It is equivalent to (1.68) and (1.69).

The above equations are valid not only for two-electrode immer-
sion lenses, but for all lenses with different axial potentials in front
and behind. The number of electrodes is arbitrary. Very frequently
three-electrode immersion lenses are used. They provide more flexibil-
ity because energy change and focusing of the beam can be adjusted
independently, within certain limits. They are constructed like einzel
lenses (see Fig. 1.39), with the only difference that the first and last
electrodes lie on different potentials.

1.12 Einzel Lenses

The notation “einzel lenses” (einzel=single) is commonly used for three-
electrode lenses, where the first and third electrodes are at the same
potential. Just as immersion lenses, einzel lenses are always focusing
lenses. Fig. 1.39 shows an example of a symmetric einzel lens con-
structed of apertured electrodes. The potential distribution resembles
a saddle surface when the equipotential lines are considered as topo-
graphic level lines. Two modes of lens operation are possible: decel–
accel and accel–decel, represented by the axial potential distribution
shown in the figure. The “lens strength” D/f of the lens (Fig. 1.40)
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Fig. 1.40. Typical dependency of refractive power of einzel lens on the potential of
the middle electrode VL for a beam energy eVB

has two branches for the two modes. The decel–accel mode is the one
used in most practical applications for two reasons: firstly, since usually
the particle source is floating by the acceleration voltage off ground and
the two outer electrodes of the lens are grounded, the center electrode
is then at a voltage with the same sign as the source voltage and can
therefore be supplied via a voltage divider. Secondly, a high refractive
power (=short focal length) can be achieved with a center electrode
voltage comparable to the source voltage. In the accel–decel mode, a
separate voltage supply with the opposite polarity as the source voltage
supply is required, and much higher voltages are required for the same
refractive power.

In spite of this, the accel–decel mode is advantageous when the focal
length required is not too short. The reason is that in this mode both
the spherical and the chromatic image aberrations are smaller than in
the decel–accel mode. The former is smaller because the trajectories are
closer to the axis. The latter because inside the lens field the relative
energy spread ∆V /V of the particles is smaller. If this mode is chosen,
the bore of the center electrode can be made smaller than that of the
outer electrodes (Fig. 1.41). This reduces the voltage required for a
given focal length.

On the decel–accel branch of the working curve, when the voltage
ratio VL/VB is increased to even more positive values, the lens strength
D/f goes through a maximum, i.e. the focal length f through a mini-
mum. This is the case because with increasing lens strength the focus
approaches the lens field. By judicious choice of the lens geometry,
this focal length minimum can be made to occur exactly at VL/VB = 1



www.manaraa.com

1.12 Einzel Lenses 41

Fig. 1.41. Einzel lens geometry advantageous for accel–decel mode

Fig. 1.42. Geometry of einzel lens having maximum refractive power with VL = VB

(middle electrode at source potential). The focal length is then f ≈ 2D. For VL = 0.5
VB the focal length becomes f ≈ 10D

(see Fig. 1.42). For some applications this is advantageous because then
both the source and the lens can be supplied by the same voltage.

When the ratio VL/VB is increased beyond +1, there comes a point
when the potential of the saddle point equals that of the source, i.e.
the particles are slowed down to zero energy, and at a potential slightly
above they are reflected. This is one way of switching a beam off.

Figures 1.42–1.45 show examples of various einzel lenses.
In the construction of lenses the most important feature is good

concentricity of the lens elements in connection with the necessary elec-
trical insulation to guarantee voltage stability. Distances and contours
are less critical as long as everything is rotationally symmetric.
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Fig. 1.43. Example of einzel lens with decel–accel mode

Fig. 1.44. Example of einzel lens with accel–decel mode

Fig. 1.45. Example of einzel lens where the middle electrode is centered and insu-
lated by six precision ceramic balls



www.manaraa.com

1.12 Einzel Lenses 43

Figure 1.45 shows an example of an einzel lens, where the center elec-
trode is held between six high precision sapphire (or alumina) spheres.
The lens is self-centering during assembly and the voltage stability is
very good because the center electrode touches the centering insulation
spheres at six points only. Depending on the application, the electrode
contours can be chosen arbitrarily.
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Electrostatic Deflection

Summary. Optical parameters and dispersive properties of electrostatic sector
fields are discussed.

The passage of charged particles through uniform electrostatic fields
has been treated in the first section already for the two cases of de-
flection by large angles and acceleration or deceleration. The following
section deals with deflection elements for beam steering with small de-
flection angles and sector fields with large angles. In both cases the
beam energy is not altered by the passage through the device.

2.1 Parallel Plate Condenser

For beam steering, be it adjustment or scanning, a pair of parallel plates
with a deflection voltage applied between them is the most commonly
used device. Its deflection properties can be easily derived from first
principles.

The field can be assumed to be sharply terminated at both ends by
“effective boundaries”, so that the effective length L of the deflector is
longer than its physical length. This takes into account the effect of the
fringe fields. The particle enters the field on the x-axis of the x−y coor-
dinate system (Fig. 2.1) with energy eV0. The central plane (y = 0) has
the potential V0, the deflection voltage is supplied symmetrically to V0.

From there on it experiences the deflection force

eE = mÿ. (2.1)

We can integrate with respect to time, whereby starting time and trans-
verse starting velocity are set to be zero at x, y = 0:

ÿ =
e

m
E, ẏ =

e

m
E t, y =

eE

2m
t2. (2.2)
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Fig. 2.1. Deflection and dispersion by parallel plate condenser

The axial starting velocity is v0 =
√

2eV0/m. We can replace t in
(2.2) by t = x/v0 and obtain then

y =
E

4V0
x2, y′ =

E

2V0
x, (2.3)

and for x = L

y1 =
E

4V0
L2, y′1 =

E

2V0
L. (2.4)

The virtual deflection center is located at

xd = L − y1/y
′
1 = L/2. (2.5)

For small deflection angles the tangent can be replaced by the angle

φ =
EL

2V0
. (2.6)

The particle energy, which increases slightly inside the field to
e (V0 + Ey), drops back to eV0 after passage of the fringe field at the
exit.

Above the trajectories for singly charged particles are calculated.
Multiply charged particles follow the same trajectories in a deflection
field if they were accelerated by the same voltage, because their charge
drops out. If they however enter the deflection field with the same
energy as singly charged particles, they experience more deflection ac-
cording to the stronger deflection force neE, n being the number of
elementary charges.

Since the deflection angle φ depends on the particle energy eV0,
the deflection field causes also energy dispersion. Particles with the en-
ergy eV0 (1 + δ) are deflected slightly differently. The term δ = ∆V /V0

denotes the relative energy deviation.
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By differentiating (2.6) with respect to V0 one obtains

∆φ = − EL

2V 2
0

∆V = −φδ. (2.7)

Thus, the value of the energy dispersion factor is identical with the
deflection angle φ.

2.2 Cylindrical Condenser

The energy dispersion of a parallel plate condenser is rather small
(see (2.7)) because only small deflection angles are possible. There-
fore, when an electrostatic deflection field is to be used for its energy
dispersion, larger deflection angles are required. The use of a uniform
field for energy dispersion was described already. For many applica-
tions, such a field requires an inconveniently large space and also a
voltage of half the beam acceleration voltage. A more popular energy
spectrometer is the cylindrical condenser (Fig. 2.2) [10]. Voltages Va,
Vb are applied to the plates so that the middle cylindrical surface lies
at the potential outside the field (usually ground potential).

The field strength E0 = Vd/d in the center is chosen so that parti-
cles entering with energy eV0 on the entrance axis travel on a circular

Fig. 2.2. Deflection and dispersion by cylindrical condenser
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Fig. 2.3. Potential distribution in a cylindrical condenser. Va = −2V0 ln (ra/re) ,
Vb = −2V0 ln (rb/re)

trajectory along the middle, which is the optic axis. The electrical cen-
tripetal force has to balance the centrifugal force:

eE0 =
mv2

0

re
=

2eV0

re
, E0 =

2V0

re
. (2.8)

In order to find the dispersive and focusing properties of the cylindrical
condenser the paraxial trajectories have to be calculated.

The potential in between the plates can be written to be (Fig. 2.3)

V (r) = −2V0 ln (r/re ) . (2.9)

With this, the field strength results as

E (r) = −dV (r)
dr

= 2
V0

r
, (2.10)

and for r = re one obtains (2.8). The particle energy in the field is

eV0 + eV (r) = eV0

(
1 − 2 ln

r

re

)
. (2.11)
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Developed in a Taylor series about r = re, (2.9) and (2.10) can be
rewritten, using the coordinate ρ = (r/re) − 1:

V (ρ) = −2V0

(
ρ − ρ2

2
+

ρ3

3
· · ·

)
, (2.12)

E (ρ) = E0

(
1 − ρ + ρ2 · · ·) . (2.13)

As a test, the Laplace equation (1.57) can be applied to (2.12). Since
there is no z-dependence, it reads here

∂2V

∂r2
+

∂V

r∂r
= 0 or

∂2V

∂ρ2
+

∂V

(1 + ρ) ∂ρ
= 0.

The inner plate surfaces are located at ρa = −d/2re and ρb = d/2re.
Inserting these into (2.12) we obtain the voltages (for negative par-

ticles) which have to be applied to the plates so that the middle is at
zero potential:

Va = V0
d

re

(
1 +

1
4

d

re

)
,

Vb = −V0
d

re

(
1 − 1

4
d

re

)
. (2.14)

The cube term of (2.12) can be neglected.
The deflection voltage across the plates is then

Vd = Va − Vb = 2
d

re
V0. (2.15)

The equations of motion for particles outside the optic axis are

mr̈ = mrϕ̇2 − eE, (2.16)

mr2ϕ̇ = const. (2.17)

These are differential equations of an oscillation about the optic axis.
After integration to first order and elimination of the time the trajec-

tory equation results. It has a period of π
√

2. By inserting the boundary
conditions, including also the arrival energy eV = eV0 (1 + δ), the fo-
cusing and dispersive properties of a sector field with a certain sector
angle φ are found. The mass m drops out, only the energy eV of the
particles matters.
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Fig. 2.4. Cylindrical condenser acting as thick lens

It is found that the cylindrical condenser sector field acts as a thick
lens (Fig. 2.4) with two principal planes. In the exit principal plane P2

the center of energy dispersion is located. In the x2, y2 coordinate sys-
tem the equation of a trajectory leaving the sector field can be written

y2 = L1α1 + x2

[(
1 − L1

f

)
α1 + λδ

]
. (2.18)

It is the equation of a lens plus the dispersion term λδ. The transfer
matrix from the entrance principal plane P1 to the exit principal plane
P2 is ⎛

⎝y2

y′2
δ2

⎞
⎠ =

⎛
⎝ 1 0 0
− 1

f 1 λ

0 0 1

⎞
⎠

⎛
⎝y1

y′1
δ1

⎞
⎠ ,

y2 = y1,
y′2 = −y1

f + y′1 + λδ,

δ2 = δ1 = δ,
(2.19)

with L1α1 = y1, α1 = y′1.
The parameters of the electrostatic sector field are:
focal length

f =
re√

2 sin
(√

2φ
) , (2.20)
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energy dispersion factor

λ =
sin

(√
2φ

)
√

2
, (2.21)

focal distance (distance of focus from field boundary)

g =
re cot

(√
2φ

)
√

2
, (2.22)

distance of principal planes from field boundary

p = f − g =
re tan

(
φ/

√
2
)

√
2

. (2.23)

For small sector angles φ the sector field can be considered a paral-
lel plate condenser, and indeed, the dispersion factor becomes (with
sin(

√
2φ) ≈ √

2φ) λ = φ (comp. (2.7); the different sign follows from
the differently defined ordinate). Also, the distance of the deflection
center becomes (tan(φ/

√
2) ≈ φ/

√
2) p = reφ/2 = L/2, when L

(= reφ) is the length of the plates. It also turns out that the paral-
lel plate condenser has weak focusing properties, the focal length being
f = re/2φ = L/2φ2 [11]. From (2.18) the imaging equation can be
deduced, with x2 = L2 (image distance) for y2 = 0 and δ = 0:

L2 =
L1

L1/f − 1
. (2.24)

The magnification is s2/s1 = L2/L1. The theoretical energy resolu-
tion is given when the image width s2 equals the energy dispersion
y2 (δ) ≡ yδ. Then the images of an entrance slit of width s1 formed by
the two beams of energies eV0 and e (V0 + ∆V ) just touch each other.
Usually another slit, the exit slit, is placed there to stop the particles
with energy e (V0 + ∆V ) and thus eliminate them from the beam. For
intensity reasons the exit slit should be made as wide as the image
of the entrance slit. If it is wider, one loses energy resolution, if it is
narrower, one loses intensity without gaining energy resolution. With
the exit slit thus chosen, the energy distribution behind it will be tri-
angular with FWHM e∆V and a base width of 2e∆V (Fig. 2.5), the
tip reaching the original energy distribution.

When an energy bandwidth e∆V is to be selected for further use, the
mean pass energy should of course be set at the maximum of the original
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Fig. 2.5. Energy resolution of cylindrical condenser

energy distribution. When the energy distribution is to be surveyed, the
pass energy is scanned over the energy distribution. The theoretical
energy resolution is obtained from the relation

s1
L2

L1
= y2 (δ) = L2λ

(
∆V

V0

)
th

,

(
∆V

V0

)
th

=
s1

L1

1
λ

. (2.25)

Note that the image distance L2 disappears. Also the radius re does not
appear in (2.25). This means, the same energy resolution is obtained
with a fixed ratio s1/L1 using a condenser with the same sector angle
φ but different radii re. The radius re, however, determines the angular
magnification and also the image aberrations.

For a given ratio s1/L1 optimum resolution is obtained with maxi-
mum λ, i.e. with

√
2φ = 90◦; φ = 63.6◦. In this case, because g = 0, the

image position is close to the exit boundary when the object distance
L1 is large in comparison with re.

In designing such an energy analyzer care must be taken that the
image is formed outside the condenser, where the exit slit can be placed.
From (2.24) and (2.23) one can deduce the condition for that to be the
case

L2 =
L1

L1/f − 1
> p. (2.26)

This yields for the range 90◦ <
√

2φ < 180◦ (63.6◦ < φ < 127.3◦) the
condition for the object distance from the entrance boundary l1 =
L1 − p:

l1 < −re
tan

(√
2φ

)
√

2
. (2.27)
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Fig. 2.6. Cylindrical condenser with 90◦ deflection angle

For example, with φ = 90◦ this yields l1 < 0.93 re (Fig. 2.6). If a larger
l1 were chosen the image would lie inside the field and no exit slit could
be placed there.

When symmetric imaging is applied, we have

L1 = L2 = 2f and l1 = l2 = g + f = re
1√

2 tan
(
φ/

√
2
) .

The distances l1 and l2 become zero for φ/
√

2 = 90◦ → φ = 127.3◦.
This is the well-known case of the 123.7◦ condenser (Fig. 2.7).

If (2.25) is used for the symmetric imaging case, one obtains, with
L1 = 2f = re

√
2/ sin

(√
2φ

)
and λ = sin

(√
2φ

)
/
√

2, the theoretical
energy resolution (

∆V

V0

)
th

=
s1

re
. (2.28)

Note that this does not depend on the sector angle φ.
One important aspect in designing a sector field energy analyzer is

the choice of the gap width d. It should be wide enough so that the
selected beam does not hit the plates somewhere in the field. The plate
spacing must therefore be wider than the largest beam width occurring
in the field. Where the beam is widest, the trajectories are parallel
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Fig. 2.7. Cylindrical condenser with 127.3◦ deflection angle

Fig. 2.8. Minimum gap width of cylindrical condenser

(Fig. 2.8). This occurs at a certain sector angle φp. We can consider
this a separate sector field, for which we have

l1 = g (φp) =
re√

2 tan
(√

2φp

) . (2.29)

From this the sector angle φp can be calculated, and then the focal
length f (φp) = re/

√
2 sin

(√
2φp

)
.

The largest trajectory distance from the optic axis is then α1f (φp).
In the z -direction there is no focusing in a cylindrical condenser.
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Fig. 2.9. Stigmatic focusing by spherical condenser

Fig. 2.10. Potential distribution in a spherical condenser. Va = 2V0 ((re/ra) − 1) ,
Vb = 2V0 ((re/rb − 1))

2.3 Spherical Condenser

The lack of focusing in the z-direction with a cylindrical condenser often
causes undesirable intensity losses. Therefore, spherical condensers are
frequently used as energy spectrometers because they focus stigmati-
cally like a round lens, but with a curved optic axis (Fig. 2.9) [12,13].

Here the potential between the plates can be written to be (Fig. 2.10)

V (r) = 2V0

(re

r
− 1

)
(2.30)
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in a spherical coordinate system, and the radial field strength is

E (r) = −dV (r)
dr

= 2V0
re

r2
. (2.31)

For r = re this yields the desired field strength E0 on the curved
optic axis, which has to be the same as with the cylindrical con-
denser, E0 = 2V0/re, (2.8). The particle energy in the field is eV (r) =
eV0 (2(re/r) − 1). Switching to the cylindrical coordinates ρ = (r/re)−1
and ζ = z/re and developing the potential around r = re in a Taylor
series in second approximation yields

V (ρ, ζ) = 2V0

(
1 − ρ + ρ2 − 1

2
ζ2 + · · ·

)
. (2.32)

The Laplace equation, which can again be applied as a test, reads with
these coordinates

∂V 2

∂ρ2
+

∂V

(1 + ρ) ∂ρ
+

∂2V

∂ζ2
= 0. (2.33)

The radial and axial components of the field strength Er (ρ, ζ) and
Ez (ρ, ζ) are found by differentiation, with 2V0/re = E0, in first ap-
proximation:

Er = − ∂V

re∂ρ
= E0 (1 − 2ρ + · · ·) (2.34)

Ez = − ∂V

re∂ζ
= E0 (ζ + · · ·) . (2.35)

The voltages against the middle potential to be applied to the plates
(for negative particles) are here, again with ρa = −d/2re and ρb =
d/2re, in first approximation

Va = V (ρa) − 2V0 =V0
d

re

(
1+

1
2

d

re

)
,

Vb = V (ρb) − 2V0 =−V0
d

re

(
1 − 1

2
d

re

)
, (2.36)

and the deflection voltage across the plates is again Vd = Va − Vb =
2(d/re)V0.
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The equations of motion are here in the r, z cylinder coordinate
system

m r̈ = m r ϕ̇2 − eEr, (2.37)

m r2ϕ̇ = const. , (2.38)
m z̈ = −eEz. (2.39)

The solution of the differential equations is again an oscillation about
the optic axis, this time not only radially but also in the z -direction.
The period of the trajectories is here 2π for both directions. The sector
field parameters result to be:

Radial and axial focal length

fr = fz =
re

sinφ
,

Energy dispersion factor

λ = sin φ.

Focal distance
gr = gz = re cot φ,

Distance of principal planes from boundary

pr = pz = re tan (φ/2) .

The principal planes cross each other at the intersection of the entrance
and exit axes (Fig. 2.11).

For the spherical condenser the image distance according to (2.24)
can also be found very simply (Fig. 2.11): Object point, center point of
the sector field and image point lie in a straight line.

The theoretical energy resolution according to (2.25) has its opti-
mum for a given ratio s1/L1 with φ = 90◦ → λ = 1. It is better by a
factor

√
2 than with the cylindrical condenser. With this sector angle,

the object distance can be up to infinity before the image position is
at the sector field exit.

In case of symmetric imaging, we have here l1 = l2 = g + f =
re cot (φ/2) (Figs. 2.12 and 2.13). These distances become zero for φ =
180◦.

The energy resolution is for symmetric imaging, with (2.25) and

L1 = 2fr =
2re

sin φ
, λ = sin φ,

(
∆V

V0

)
th

=
s1

2re
. (2.40)
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Fig. 2.11. Lens action of spherical condenser, radially and axially. Energy dispersion
yδ = L2δ, sr2 = (L2/L1)sr1, sz2 = (L2/L1)sz1

Fig. 2.12. Symmetric imaging with 90◦ spherical condenser. Energy dispersion
yδ = 2reδ

This is twice as good as for the cylindrical condenser (see (2.28)), com-
pared on the basis of equal radius re. A fairer comparison would be
on the basis of equal path length between object and image slit. If
one calculates this, for example, with φ = 90◦, the improvement from
cylindrical to spherical sector field is only a factor of 1.35.
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Fig. 2.13. Imaging with 180◦ spherical condenser. Energy dispersion yδ = 2reδ

Fig. 2.14. Toroidal condenser, re/Re = c

2.4 Toroidal Condenser

In most practical cases cylindrical or spherical condenser sector fields
suffice for a given application. There are, however, rare cases were cer-
tain other imaging or dispersive properties are wanted which cannot be
provided by the above sector fields.

A toroidal condenser (Fig. 2.14) has different radii of curvature re

and Re of the median equipotential surface in the r- and z-directions,
and as a consequence different focusing properties in these directions.

We define the ratio of these radii as c = re/Re. The potential around
the optic axis can be written [14] (counted from the axis) to be

V (ρ, ζ) = −2V0

(
ρ − 1 + c

2
ρ2 +

c

2
ζ2 + · · ·

)
. (2.41)
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The radial and axial field strength components, obtained by differenti-
ation, are

Er = E0 [1 − (1 + c) ρ + · · ·] , (2.42)
Ez = E0 (cζ + · · ·) (2.43)

The voltages to be applied to the plates are, from (2.41),

Va = V0
d

re

(
1 +

1 + c

4
d

re

)
, Vb = −V0

d

re

(
1 − 1 + c

4
d

re

)
. (2.44)

The cylindrical (c = 0) and the spherical (c = 1) condenser can be
considered special cases of this general toroidal condenser (comp. 2.12,
2.13, 2.32 and 2.34). The resulting field parameters are (comp. Fig. 2.4):

Radial focal length

fr =
re√

2 − c sin
(√

2 − cφ
) ,

Axial focal length
fz =

re√
c sin (

√
cφ)

,

Radial focal distance

gr =
re cot

(√
2 − cφ

)
√

2 − c
,

Axial focal distance

gz = re
cot (

√
cφ)√

c
, (2.45)

Radial principal plane distance

pr = fr − gr =
re√
2 − c

tan
(√

2 − c

2
φ

)
,

Axial principal plane distance

pz = fz − gz =
re√
c

tan
(√

c

2
φ

)
,

Dispersion factor

λ =
sin

(√
2 − cφ

)
√

2 − c
.
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For 0 < c < 1(∞ > Re > re) the radial focusing is stronger than
the axial one, while for 1 < c < 2(re > Re > re/2) the axial focusing is
stronger than the radial one.

In case of symmetric imaging we obtain with L1 = 2fr from (2.25)
the general expression for the energy resolution:(

∆V

V0

)
th

=
s1

re

2 − c

2
, (2.46)

which includes (2.28) and (2.40). So for a given s1/re, the energy reso-
lution can be improved by letting c approach 2. This, however, goes at
the expense of object to image distance along the optic axis. Further,
the axial focusing has to be taken into account, so that the intensity is
not lost by axial divergence of the beam.

There is a possibility to choose c in the favourable range 1 < c < 2
[15] and still achieve stigmatic imaging in both directions. This is the
case when an axial intermediate image is formed but no radial one. If
one chooses symmetric imaging, the intermediate axial image is formed
at half the sector angle. On the other hand, the object (or image)
distance lr1(= lz1) of the full sector field is identical with the radial
focal distance gr1/2 of half the sector field. Using Newton’s form of the
axial imaging equation(

lz1 − gz1/2

) (
lz2 1/2 − gz1/2

)
= f2

z1/2,

we have therefore (
gr1/2 − gz1/2

) (−gz1/2

)
= f2

z1/2.

With the values from (2.45) this yields the condition√
c

2 − c
= − tan

(√
2 − c

2
φ

)
tan

(√
c

2
φ

)
. (2.47)

For example, this condition is met with φ = 180◦ and c = 1.69
(Fig. 2.15). The other parameters are then lr1 = 1.5re, pr = 2.15re,
fr = 1.83re, λ = 1.77.

The energy dispersion is a factor 1/(2 − c) = 3.2 higher than that
of a spherical condenser with the same re, and therefore the energy
resolution by the same factor better (comp. Fig. 2.13 with Fig. 2.15).

Other cases of stigmatically imaging toroidal sector fields are
possible, namely when a radial but no axial intermediate image is
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Fig. 2.15. Stigmatically imaging toroidal condenser with axial intermediate image.
φ = 180◦, Re = 0.59re, l = 1.5re, yδ = 6.45reδ

formed [16]. The condition for this to be the case for symmetric imaging
is found to be√

2 − c

c
= − tan

(√
2 − c

2
φ

)
tan

(√
c

2
φ

)
. (2.48)

Such a sector field, however, has no use as an energy analyzer because
the energy dispersion at the final image position is zero: the energy
dispersion of the first half of the field is cancelled by the second half.
There is, however, a very useful application: When a certain additional
condition is met concerning the time-of-flight of ions from entrance to
exit slit, a short pulse of ions formed with a small relative energy spread
at the entrance slit arrives simultaneously at the exit slit. With this, we
have a time-of-flight mass spectrometer with good mass resolution [17].
Figure. 2.16 shows a geometry which has been realized.

A special case of a toroidal condenser is when c = 2, Re = re/2
(Fig. 2.17). Then the radial focal length fr becomes infinite (see (2.45)),
and there is focusing only in the axial direction. The dispersion factor
becomes λ = φ (because sin

(√
2 − cφ

) → √
2 − cφ for

√
2 − cφ → 0).

With (2.45) we have here:

Axial focal length
fz =

re√
2 sin

(√
2φ

) ,
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Fig. 2.16. Stigmatically imaging toroidal condenser with radial intermediate image,
without energy dispersion, but with time-of-flight focusing

Fig. 2.17. Toroidal condenser with Re = re/2 has no radial but strong axial focusing
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Axial focal distance

gz = re
cot

(√
2φ

)
√

2
,

Radial principal plane distance

pr = re
φ

2
, (2.49)

Axial principal plane distance

pz =
re√
2

tan
(

φ√
2

)
,

Dispersion factor
λ = φ.

Note that the axial lens parameters are the same as the radial ones for
the cylindrical condenser ((2.20)–(2.23)). When such a sector field is to
be used as an energy spectrometer, it has to be combined with a device
focusing in the r-direction.

If the axial curvature is made even stronger (c > 2, Re < re/2),
the expression

√
2 − c in (2.45) becomes imaginary. The lens param-

eters, however, are still real and we have (with
√

2 − c = i
√

c − 2,
sin

(
i
√

c − 2φ
)

= i sinh
√

c − 2, etc., i · i = −1):

fr =
−re√

c − 2 sinh
(√

c − 2φ
) , fz =

re√
c sin (

√
cφ)

,

gr = −re
coth

(√
c − 2φ

)
√

c − 2
, gz = re

cot (
√

cφ)√
c

, (2.50)

pr =
re√
c − 2

tanh
(√

c − 2
2

φ

)
, pz =

re√
c

tan
(√

c

2
φ

)
,

λ =
sinh

(√
c − 2φ

)
√

c − 2
.

Such a sector field acts radially as a diverging lens and axially as a
strong focusing lens (Fig. 2.18).

Remembering the hyperbolic functions (Fig. 2.19), very large disper-
sion factors λ can be realized with such a sector field, e.g. with c = 3,
Re = re/3 and φ = 90◦ the dispersion factor is λ = sinhφ = 2.3. The
strong axial focusing, however may be a hindrance.
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Fig. 2.18. Toroidal condenser with Re < re/2 focuses axially but defocuses radially

Fig. 2.19. The hyperbolic functions

Another class of toroidal condensers, which is also covered by
(2.45), arises when the radial and axial curvatures are made opposite
(Fig. 2.20). In this case the radius Re is counted negative, so that c is
negative.
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Fig. 2.20. Toroidal condenser with negative axial radius of curvature: strong radial
focusing, but defocusing axially

The lens parameters are then

fr =
re√

2 − c sinh
(√

2 − cφ
) , fz =

−re√|c| sinh
(√|c|φ

) ,

gr = re
cot

(√
2 − cφ

)
√

2 − c
, gz = −re

coth
(√|c|φ

)
√|c| , (2.51)

pr =
re√
2 − c

tan
(√

2 − c

c
φ

)
, pz =

re√|c| tanh

(√|c|
2

φ

)
,

λ =
sin

(√
2 − cφ

)
√

2 − c
.

These sector fields act radially as focusing lenses, but axially as diverg-
ing lenses.
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Magnetic Deflection

Summary. Optical parameters and dispersive properties of magnetic sector fields
are discussed.

When a singly charged particle of energy eV enters a uniform magnetic
field B oriented transversely to the particle trajectory, it experiences
the deflecting Lorentz force FL = evB, which is counterbalanced by
the centrifugal force Fc = mv2/r, where v is the particle velocity and
m its mass:

mv2

r
= evB,

mv

r
= eB. (3.1)

With mv2/2 = eV , mv =
√

2emV this yields

rB =
√

2mV /e or rB = 143.6
√

MV (3.2)

with r [cm], B [G], M [dalton], V [V] (Fig. 3.1).
Another form is rB = 0.454

√
MV , with r [cm], B [T], M [dalton],

V [kV]. For electrons (with M = 1/1, 823 dalton) we have

rB = 3.35
√

V (3.3)

with r [cm], B [G], V [V]. Multiply charged ions with n elementary
charges are deflected as if they had the mass M/n, if they have been
accelerated by the same voltage V as singly charged ions.

3.1 Small Deflection Angles

Small deflection angles φ are obtained from φ ≈ L/r, where L is the
length of the field and r is obtained from (3.2) or (3.3). The deflection
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Fig. 3.1. Magnetic deflection of charged particles

at the end of the field is (cosine developed as power series) y (L) =
r (1 − cos φ) ≈ rφ2/2 = L2/2r. The center of deflection is situated at
the distance y (L)/φ = L/2 from the end of the field, i.e. in the middle
of the field (comp. Fig. 2.1). Since the deflection depends on the mass
and the energy (see (3.2)) one can define a mass and energy dispersion
coefficient. Inserting a slightly different mass M1 = M0 (1 + γ) and
energy V1 = V0 (1 + δ) into (3.2) and developing it into a power series,
one obtains in first order

r1 =
143.6

B

√
M1V1 =

143.6
B

√
M0 (1 + γ)V0 (1 + δ)

=
143.6

B

√
M0V0

(
1 +

γ

2
+

δ

2

)
.

This yields

r1 = r0

(
1 +

γ

2
+

δ

2

)
and

φ1 =
L

r1
=

L

r0

(
1 − γ

2
− δ

2

)
.

Therefore,

φ1 − φ0 = ∆φ = −1
2
φ0 (γ + δ) . (3.4)

The dispersion factor is thus φ0/2 both for mass and energy. Note
that the energy dispersion factor is half of that of an electrostatic field
(comp. (2.7)). Magnetic deflection fields are used mostly for their mass
dispersion in ion physics, and then larger deflection angles are common
for their larger mass dispersion.
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Fig. 3.2. Optical parameters of uniform magnetic sector field

3.2 Magnetic Sector Fields

A magnetic sector field is usually shaped after the contour of the beam
passing through it in order to save magnetic volume (Fig. 3.2). The
optic axis has three parts: the straight entrance axis perpendicular to
the field boundary, the curved axis inside the field followed by a particle
with mass M0 and energy eV0 entering on the entrance axis, and the
straight exit axis perpendicular to the exit boundary.

In a uniform magnetic sector field a paraxial trajectory can be cal-
culated simply trigonometrically, in contrast to the electrostatic sector
field, because the particle energy stays the same and hence also the
radius of the trajectory. Its exit equation results to be

y = L1α + x

[(
1 − L1

f

)
α + ν (γ + δ)

]
. (3.5)

Similar to an electrostatic sector field, a magnetic sector field combines
focusing with dispersive properties, characterized by the two terms in
the parenthesis. The dispersion term comprises the sum γ + δ. This
means that a particle is deflected the same way whether it has a certain
mass deviation or the same relative energy deviation. If they are equal
but opposite, no dispersion occurs.

The two principal planes P1 and P2 are rotated by the sector angle φ
about the intersection of the entrance and exit optic axes. The transfer
matrix from P1 and P2 is
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⎝ y2

y′2
γ + δ

⎞
⎠ =

⎛
⎝ 1 0 0

− 1
f 1 γ

0 0 1

⎞
⎠

⎛
⎝ y1

y′1
γ + δ

⎞
⎠ (3.6)

with L1α = y1, α = y′1. The parameters of the uniform magnetic sector
field are:

Focal length
f =

r

sinφ
,

dispersion factor

ν =
1
2

sin φ , (3.7)

focal distance (from field boundary)

g = r cot φ ,

distance of principal planes from field boundary

p = r tan
φ

2
.

From (3.5) the imaging equation can be deduced, with x = L2 (image
distance) for y = 0 and γ = δ = 0:

L2 =
L1

L1/f − 1
. (3.8)

A real image is formed (L2 > 0), when L1 > f . The magnifica-
tion equals L2/L1. The image position can be found geometrically by
Barber’s construction (Fig. 3.3): object point, sector center and image
point lie in a straight line. This is also true for virtual objects and
images (Figs. 3.4–3.7).

The most common application of magnetic sector fields is for mass
separation or mass spectrometry. In order to express the mass reso-
lution of a magnetic sector field, the image width of an entrance slit
placed at the object position has to be compared with the mass disper-
sion. The mass dispersion in the image plane is, from (3.5),

yγ = L2νγ, (3.9)

where γ = ∆M/M is the relative mass difference. The width of the
image of the entrance slit is s2 = s1L2/L1. This would be due to ions
with the energy eV0. Because of the unavoidable energy spread of the
ions, the energy dispersion in the image plane has to be added, which
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Fig. 3.3. Barber’s construction with real object and image points outside the field
(L1 > 0; L2 > 0)

Fig. 3.4. Barber’s construction with virtual object point (L1 < 0) and image point
outside the field (L2 > p)
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Fig. 3.5. Barber’s construction with virtual object point (L1 < 0) and image point
inside the field (L2 < p)

Fig. 3.6. Barber’s construction with real object point (L1 < f) and virtual image
point (L2 < 0)
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Fig. 3.7. Barber’s construction with L1 = L2 = 0

is, in analogy to (3.9), yδ = L2νδ, where δ = ∆V /V0 is the relative
energy spread of the ions. The total image width is thus

w = s2 + yδ = (s1/L1 + νδ)L2. (3.10)

An exit slit is placed in the image plane, which for intensity reasons
should have the width w. The theoretical mass resolution is given when
the image width w equals the mass dispersion

(s1/L1 + νδ)L2 = L2νγ,

(
∆M

M

)
th

=
s1

L1ν
+ δ. (3.11)

This relation shows that the relative energy spread principally limits
the achievable mass resolution. For a given energy spread ∆V it can
only be improved by increasing the acceleration voltage, which in turn
requires a higher magnetic field.

When symmetric imaging is employed (L1 = L2 = L = 2f), we
have, with (3.7), L1ν = r, so that(

∆M

M

)
th

=
s1

r
+ δ. (3.12)

Note that this does not depend on the sector angle φ. With decreasing
φ, however, the distance from the boundaries L−p = g+f = r cot (φ/2)
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becomes larger and hence the solid angle accepted by a certain aperture
diameter becomes smaller.

3.3 Axial Focusing
with Uniform Magnetic Sector Field

A uniform magnetic sector field as described in the previous section, has
dispersing and focusing properties only parallel to the plane defined by
the curved optic axis, in analogy to the cylindrical condenser. In order
to achieve focusing action also normal to that plane (parallel to the axis
of rotation), oblique field boundaries are frequently used [18,19]. When
the field boundary normal includes an angle ε with the entrance or exit
optic axis (Fig. 3.8), there is a field component Bε acting parallel to the
plane of the optic axis and normal to the trajectory, thus resulting in a
deflecting force normal to the plane of the optic axis. As a consequence,
the fringe field acts as a thin lens focusing normal to the plane of
symmetry with the first-order focal length

fε = r cot ε. (3.13)

It can be positive or negative, depending on the sign of ε. Figure 3.8
shows a positive ε. Oblique field boundaries, however, have an effect

Fig. 3.8. Axial focusing by fringe field of oblique field boundary. Component Bx

of field line tangent Bt is split up into one component along trajectory and another
perpendicular to it, Bε. Component Bε exerts a focusing force towards the plane of
the optic axis
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Fig. 3.9. Optical parameters of uniform magnetic sector field with oblique
boundaries

also on the radial focusing of a uniform magnetic sector field. When
one of the fringe fields acts as a converging lens in the axial direction
(ε positive) the radial focusing action is weaker. When a fringe field
acts as a diverging lens (negative ε), the radial focusing is stronger. The
following are the focusing parameters for the general case (Fig. 3.9).

f = r
cos ε1 cos ε2

sin Ω
,

g1 = r
cos ε1 cos (φ − ε2)

sin Ω
, g2 = r

cos ε2 cos (φ − ε1)
sinΩ

,

p1 = f − g1 = r
cos ε1

sin Ω
[cos ε2 − cos (φ − ε2)] ,

p2 = f − g2 = r
cos ε2

sin Ω
[cos ε1 − cos (φ − ε1)] .

(3.14)

With the above value of f , (3.5) and (3.8) apply. The center of mass
and energy dispersion is at the distance pν from the exit boundary,
which is here different from p2 (with normal boundaries it is the same)
(Fig. 3.10):

pν =
r

cot (φ/2) + tan ε2
. (3.15)
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Fig. 3.10. Center of dispersion of uniform magnetic sector field with oblique
boundaries

The trajectory equation behind the field in the x−yν coordinate system
is

yν = xν (γ + δ) (3.16)

with the dispersion factor

ν =
1
2

[sinφ + (1 − cos φ) tan ε2] . (3.17)

In the special case where the field boundaries are parallel (Ω = 0,
ε1 +ε2 = φ), there is no radial focusing (f = ∞, see (3.14)), but always
axial focusing (Fig. 3.11).

With an example the application of fringe field focusing is demon-
strated, viz. a symmetric stigmatic imaging mass separator with ε1 =
ε2 = ε (Fig. 3.12). In the middle of the sector field (at φ/2), the beam
must be parallel both radially and axially. Thus, considering one half
of the sector field, we have fε = g (φ/2); with (3.13 and 3.14) we obtain

cot ε =
cos ε cos (φ/2)
sin (φ/2 − ε)

,
sin (φ/2 − ε)

cos (φ/2)
= sin ε,

tan
φ

2
cos ε − sin ε = sin ε,

tan ε =
1
2

tan
φ

2
. (3.18)
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Fig. 3.11. Parallel field boundaries: no radial, but axial focusing, (a) ε1 = φ, ε2 = 0,
(b) ε1 = ε2 = φ/2

Fig. 3.12. Symmetric stigmatic imaging by fringe field focusing, L1 = L2
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This is the relation between ε and φ which must be met. With
φ = 90◦ one obtains tan ε = 0.5, ε = 26.6◦, fε = 2r, f = (4/3)r,
g = (2/3)r, p = (2/3)r, L = 2f = (8/3)r.

The deflection center for the mass dispersion is at the distance pν =
(2/3)r from the exit, the same as p, the distance of the principal plane.
Further we have ν = 3/4 and the dispersion at the image plane

yγ,δ = Lν (γ + δ) = 2r (γ + δ) . (3.19)

This is twice as much as with a uniform sector field with normal bound-
aries having the same mean deflection radius r. The mass resolution is
obtained (see. (3.11)) to be(

∆M

M

)
th

=
s1

2r
+ δ. (3.20)

This is better than in the case of normal boundaries (comp. (3.12)),
but at the expense of longer distances of source and image from the
sector field.

3.4 Non-Uniform Magnetic Sector Fields

Another way to achieve focusing also in the axial direction, but without
axial fringe field focusing, is to use sector fields which are radially non-
uniform [20–23].

When the pole piece surfaces of the sector magnet are not parallel
but conical (Fig. 3.13) so that in a cross section in a plane through z
their tangents intersect at a radial distance Rm from the optic axis, a
coefficient of non-uniformity can be defined:

n =
rm

Rm
, (3.21)

rm being the radius of the circularly curved optic axis inside the field.
With B0 being the field strength on the optic axis, the off-axis field can
be described by its axial and radial components (in first-order approx-
imation):

Bz (r, z) = B0 (1 − nρ + · · ·) , (3.22)
Br (r, z) = B0 (−nζ + · · ·) . (3.23)
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Fig. 3.13. Non-uniform magnetic sector field

The optical parameters of such a field are (comp. Fig. 3.2):

fr =
rm√

1 − n sin
(√

1 − nφ
) radial focal length (3.24a)

gr =
rm√

1 − n tan
(√

1 − nφ
) radial focal distance (3.24b)

pr = fr − gr =
rm√
1 − n

tan
(√

1 − nφ/2
)
distance of radial

principal plane (3.24c)

ν =
sin

(√
1 − nφ

)
2
√

1 − n
dispersion factor (3.24d)

pν = pr distance of dispersion center
(3.24e)

fz =
rm√

n sin (
√

nφ)
axial focal length (3.24f)

gz =
rm√

n tan (
√

nφ)
axial focal distance (3.24g)

pz = fz − gz =
rm√

n
tan

(√
nφ/2

)
distance of axial

principal plane (3.24h)
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Fig. 3.14. Special case of non-uniform magnetic sector field: Rm = 2rm

In the special case when n = 1/2 (Rm = 2rm) (Fig. 3.14), the radial and
axial parameters become equal so that stigmatic imaging occurs:

fr = fz = rm

√
2

sin
(
φ/

√
2
)
,

gr = gz = rm

√
2 cot

(
φ/

√
2
)

,

pr = pz = rm

√
2 tan

(
φ/2

√
2
)

,

ν =
1√
2

sin
(
φ/

√
2
)

.

(3.25)

In case of symmetric imaging the source and image distance becomes

l = rm

√
2
1 + cos

(
φ/

√
2
)

sin
(
φ/

√
2
) = rm

√
2 cot

(
φ/2

√
2
)

. (3.26)

Two examples are shown in Figs. 3.15 and 3.16. The dispersion in the
image plane is

yγ,δ = 2fν (γ + δ) = 2rm (γ + δ) , (3.27)

independent of the sector angle φ. Note that this is the same as in the
previous example of stigmatic imaging with fringe field focusing and
φ = 90◦ ((3.19)).
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Fig. 3.15. Symmetric stigmatic imaging by non-uniform magnetic sector field with
Rm = 2rm. Example: φ = 90◦; f = 1.58 rm; p = 0.88 rm; g = 0.70 rm; l = 2.28 rm.
Dispersion yγ,δ = 2rm (γ + δ)

Fig. 3.16. Symmetric stigmatic imaging by non-uniform magnetic sector field with
φ = 180◦; f = 1.78 rm; p = 2.85 rm; g = −1.08 rm; l = 0.70 rm. Dispersion yγ,δ =
2rm (γ + δ)
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Fig. 3.17. Stigmatic imaging by non-uniform magnetic sector field from entrance
to exit boundary

Fig. 3.18. Non-uniform magnetic sector field with Rm = rm

The object and image distance becomes zero with (see (3.26)) φ =
2
√

2 × 90◦ = 254.6◦ (Fig. 3.17). Another special case is when n = 1
(Rm = rm) (compare the toroidal field case with c = 2) (Fig. 3.18).

In this case the radius of curvature of a particle trajectory equals
the distance from the z-origin, there is no radial focusing, only axial
focusing (Fig. 3.19).
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Fig. 3.19. Non-uniform magnetic sector field with Rm = rm: no radial focusing,
but axial focusing

The optical parameters are

fr = ∞, gr = ∞, fz =
rm

sinφ
, gz = rm cot φ,

pz = pν = rm tan
(

φ

2

)
, ν = φ/2. (3.28)

In case n > 1 (Rm < rm) (Fig. 3.20) the expression
√

1 − n in (3.24)
becomes imaginary. (Comp. case c > 2).

The lens parameters, however, are again still real:

fr =
−rm√

n − 1 sinh
(√

n − 1φ
) ,

gr =
−rm√

n − 1 tanh
(√

n − 1φ
) ,

pr = pν =
rm√
n − 1

tanh
(√

n − 1φ/2
)
,

ν =
sinh

(√
n − 1φ

)
2
√

n − 1
.

(3.29)
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Fig. 3.20. Non-uniform magnetic sector field with Rm < rm

The axial parameters are the same as above (3.24f–h)

fz =
rm√

n sin (
√

nφ)
,

gz =
rm√

n tan (
√

nφ)
,

pz =
rm√

n
tan

(√
nφ/2

)
.

Such a sector field acts radially as a diverging lens and axially as a
strong focusing lens (Fig. 3.21).

In view of the rising characteristic of the sinh function (see Fig. 2.19),
large dispersion factors ν can be realized with such a sector field. When
used as a mass spectrometer, a radially focusing lens has to be provided.
The factor n can be made negative, too (Fig. 3.22). Here the radial lens
parameters are the same as in the general case (see (3.24 a–e)), but the
axial ones are

fz =
−rm√|n| sinh

(√|n|φ
) ,

gz =
−rm√|n| tanh

(√|n|φ
) , (3.30)

pz =
−rm√|n| tanh

(√
|n|φ/2

)
.
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Fig. 3.21. Optical parameters of non-uniform magnetic sector field with Rm < rm

Fig. 3.22. Non-uniform magnetic sector field with Rm < 0

The sector field acts as a diverging lens axially (Fig. 3.23). Another
form of mass separators with a non-uniform magnetic field are those
with a wedge-shaped magnetic gap. It is formed by tilting the planar
pole piece surfaces, so that their planes intersect along a straight line
(Fig. 3.24), the y-axis [24–27].
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Fig. 3.23. Optical parameters of non-uniform magnetic sector field with Rm < 0

Fig. 3.24. Non-uniform magnetic field with wedge-shaped gap. Stigmatic focusing
with the geometry shown. For central trajectory K0 = 0.7425. Dispersion yγ,δ =
2.17A (γ + δ)
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The field lines between the pole piece surfaces inside the gap are cir-
cular arcs having the y-axis as their center. The tangential field strength
is inversely proportional to the distance from the y-axis: Bβ = C/r. The
trajectories are trochoidal, the radius of curvature being proportional
to the distance from the y-axis: ρ = Kr. The connection between K
and C for singly charged ions is given by KC = 143.6

√
MV (B in

gauss, M in dalton, V in volt, r in cm). It is obvious that such a field
refocuses ions starting from the y-axis with an angle β (see Fig. 3.24)
back onto the y-axis simply because they cross the field lines inside
the gap always at right angles so that the trajectories lie in the plane
through the axis. In the y-direction there is also focusing, as shown in
Fig. 3.24. However, no general analytical formulae can be given here, as
in the previous cases of sector fields, for the ion optical parameters as
functions of mean deflection radius and angle, because each case must
be treated numerically. So only two examples of stigmatically focusing
wedge fields are given here, one with 180◦ deflection, shown in Fig. 3.24,
the other with 90◦ deflection (Fig. 3.25).

One can compare the first example (180◦ deflection) with a 180◦-
field with n = 1/2 , taking the distance D between entrance and exit
point of the optic axis as scaling parameter. In the wedge-gap case it
is D = 2.7A, while in the n = 1/2-case it is D = 2rm. The dispersions
are yγ,δ = 0.8D (γ + δ) (Fig. 3.24) and yγ,δ = D (γ + δ), respectively.

In comparing the two cases with 90◦ deflection (Figs. 3.25, 3.15)
and choosing as scaling parameter again the distance D between en-
trance and exit point of the optic axis, one has in the wedge-gap case

Fig. 3.25. Non-uniform magnetic field with wedge-shaped gap and stigmatic focus-
ing with the geometry shown: φ = 90◦; K0 = 0.55; rmax = 0.83l; ρmax = 0.46l; r0 =
0.71l; ρ0 = 0.39l; D = 0.62 l; pν = 0.39 l. Dispersion yγ,δ = 0.95 l (γ + δ)
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D = 0.62 l and in the n = 1/2-case D =
√

2rm. The dispersions are
yγ,δ = 1.53D (γ + δ) (wedge) and yγ,δ = 1.41D (γ + δ). So there is
not much difference in the performance of the two stigmatic focusing
cases. A disadvantage of the wedge-gap geometry is, however, that the
gap width varies by more than a factor of two for 180◦ deflection, so
that the pole pieces approach saturation earlier where the gap is nar-
rower, with the consequence that the field distribution deviates from
the dependency Bβ = C/r.



www.manaraa.com

4

Image Aberrations

Summary. The most important image aberrations of lenses and electric and mag-
netic sector fields are given.

In the previous chapters the first-order focusing properties were con-
sidered. When designing or operating an optical element such as a lens
or a sector field, very soon the question arises what aperture angles
can be admitted or which beam limiting apertures can be used. Large
apertures are of course desirable for intensity reasons, but the limita-
tion as to their diameter or width is given when the aberrations become
comparable with the geometric (Gaussian) image size.

Only the most important aberrations are considered here: of trajec-
tories starting from the axis point of the object, in rotationally sym-
metric systems (lenses) the so-called spherical

(
α3

)
aberration and the

chromatic (αδ) aberration, in sector fields the quadratic
(
α2, β2

)
aber-

rations in the direction of the dispersion due to the aperture angles in
the deflection plane α and β out of it.

4.1 Lenses

In a number of publications the optical properties of electrostatic lenses
have been computed, including the spherical and chromatic aberrations
[6–9]. Here, only rules of thumb are given for these aberrations of einzel
lenses, since they depend very much on their geometries.

When a beam of particles consisting of trajectories parallel to the
axis enters the lens, it is focused to the axis at the focal distance.
But since the refraction of the trajectories increases slightly more than
proportional to their distance from the axis, they do not meet exactly
at the same point but form a caustic figure (Fig. 4.1). The narrowest
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Fig. 4.1. Spherical aberration of rotationally symmetric lens

cross section, the so-called “circle of least confusion” is formed by the
trajectories entering the lens at the distances ra and ra/2, resp., where
maximum distance ra is usually defined by a round aperture.

The diameter of the circle of least confusion is usually called the
spherical aberration. It can be given by the expression

ds = Ksr
3
a/D

2, (4.1)

where Ks is a dimensionless lens-specific factor ranging from 2 to 10 for
einzel lenses, and D is a scaling parameter (cm) relating to the axial
extent of the lens field. The spherical aberration of a lens with a given
geometry is nearly independent of the imaging ratio, thus depending
only on the diameter of the beam where it passes the lens. This is
expressed by (4.1). The factor Ks is lower when the lens is operated
in the accel–decel mode for the reason given above. As (4.1) shows,
the dimension D has a strong influence on the spherical aberration: for
a given distance between object and image, the field should be made
axially as long as possible.

The chromatic aberration is a consequence of the fact that the fo-
cal length depends on the energy of the particles (Fig. 4.2). It can be
written as

dc = Kcra∆V /V0, (4.2)

where Kc is a dimensionless factor ranging from 1 to 5 for einzel lenses,
and ∆V /V0 = δ is the relative energy spread of the charged particles.
The factor Kc is close to unity for accel–decel type einzel lenses, while
for decel–accel type lenses it is closer to 5. This is a consequence of the
fact that in the first case the particle energy inside the lens becomes
higher than outside, so that inside the relative energy spread is smaller
than outside, ∆V being constant.

With decel–accel lenses the opposite is the case: the relative energy
spread inside the lens becomes larger than outside, resulting in a larger
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Fig. 4.2. Chromatic aberration of rotationally symmetric lens

Fig. 4.3. Toroidal condenser with excentric axial curvatures of the electrode surfaces

factor Kc. So in view of keeping both the spherical and the chromatic
aberrations as low as possible, einzel lenses are preferably operated in
the accel–decel mode, provided that voltage breakdown considerations
allow it, because this mode requires higher voltages to be applied to
the middle lens element than the decel–accel mode (comp. Fig. 1.40).

4.2 General Toroidal Condenser

The first-order focusing properties of a toroidal condenser are deter-
mined by the axial curvature of the median equipotential surface,
c = re/Re. Given a certain radius Re of the axial curvature, the cur-
vatures of the condenser plates Ra and Rb do not necessarily have to
be concentric, as shown in Fig. 2.14, but may be excentric, as shown
in Fig. 4.3. This can be used to influence the second-order focusing
properties, i.e. the α2- and β2-image aberrations [28–33].
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This geometrical feature can be expressed by the differential quo-
tient R′

e =
(

dR
dr

)
r=re,z=0

, which indicates the variation of the axial
radius R as one moves away from the optic axis in the radial direction.
When the axial curvatures are concentric, R′

e equals unity. Another
description generally used is the derivation of the axial curvature at
the optic axis

c′ = re

[
d
dr

(re

R

)]
re,0

. (4.3)

The two coefficients are connected by the relation

c′ = −c2R′
e.

In order to calculate these aberrations for electrostatic sector fields,
the potential near the optic axis (comp. (2.41)), has to be developed in
a Taylor series to third order. This can be done analytically. The field
strength components Er and Ez are then obtained to second order, and
with these also the trajectories. The potential is found to be

V (ρ, ζ) = −2V0

[
ρ − 1

2
(1 + c) ρ2 +

c

2
ζ2 +

1
6

(
2 + 2c + c2 − c′

)
ρ3

−1
2

(
c + c2 − c′

)
ρζ2 . . .

]
, (4.4)

where eV0 is the particle energy outside the field and the potential of
the optic axis (ρ = ζ = 0) is defined as zero. By differentiation, one
obtains the field strength components

Er = E0

[
1− (1 + c) ρ+

1
2

(
2 + 2c + c2 − c′

)
ρ2 − 1

2
(
c + c2 − c′

)
ζ2 . . .

]
(4.5)

Ez = E0ζ
[
c − (

c + c2 − c′
)
ρ . . .

]
. (4.6)

Another means to influence the second-order focusing properties is
to replace the planar end faces of a sector field by curved ones (see
Fig. 4.4).

The second-order angular aberrations of the image of a point source
in the plane of symmetry (z = 0) transverse to the exit optic axis are
the α2 aberration and the β2 aberration (Fig. 4.5). They can be written
as follows:

yαα = re

(
κααα2 + καuαu + κuuu2

)
+ l2

(
λααα2 + λαuαu + λuuu2

)
,

(4.7)
yββ = re

(
κβββ2 + κβvβv + κvvv

2
)

+ l2
(
λβββ2 + λβvβv + λvvv

2
)
,

(4.8)
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Fig. 4.4. Electrostatic sector field with curved entrance and exit faces, q1re =
Q1, q2re = Q2

Fig. 4.5. Second-order angular aberration of image point formed by a sector field

where u and v are the dimensionless radial and axial entrance distances
from the optic axis: u = r/re − 1 = αl1/re, v = z/re = βl1/re.

The coefficients κik and λik are

καα =
k1

2 − c

(
1
2
κ2

α − κδ

)
,

καu = −k1κακδ,

κuu = −k1

2
(
κ2

α + κδ

) − 1
2q1

κα,

λαα = −k1κακδ − 1
2q2

κ2
α,

λαu = −k1

(
κ2

α + κuκδ

) − 1
q2

κακu,
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λuu = −k1

2
κα (1 + 2κu) − 1

2q1
κu − 1

2q2
κ2

u,

κββ = k2

(
1
2
κ2

β − κδ

)
− κδ, (4.9)

κβv = k2 (κβκu − κα) ,

κvv =
k2

2
[
(2 − 3c)κδ − cκ2

β

] − cκδ +
1

2q1
κα,

λββ = k2 (κβκu − κα) − κα +
1

2q2
κ2

β ,

λβv = k2

[
(2 − c) κδ − 2cκ2

β

]
+

1
q2

κβκu,

λvv = k2

(
2 − 3c

2
κα − cκβκv

)
− cκα +

1
2q1

κu +
1

2q2
κ2

v ,

with the abbreviations

κα =
sin

(√
2 − cφ

)
√

2 − c
,

κδ =
1 − cos

(√
2 − cφ

)
2 − c

,

κu = cos
(√

2 − cφ
)
,

κβ =
sin (

√
cφ)√

c
,

κv = cos
(√

cφ
)
.

The factors q1 and q2 denote the curvatures of the entrance and exit
front faces (see Fig. 4.4). The factors k1 and k2 are

k1 =
1
3

(
8 − 7c + c2 − c′

)
,

k2 =
c + c2 − c′

2 − 5c
.

As an example, the toroidal energy analyzer described earlier (Fig. 2.15)
would have rather large α2 and β2 aberrations with planar end faces
and concentric axial radii. By judicious choice of q1, q2 = q and c′ both
of these aberrations can be made to vanish [33], thus allowing rather
large aperture angles.
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When a certain value of c′ is chosen, the axial radii Ra and Rb of
the condenser plates have to be determined. They can be calculated by
means of the relation [34]

re

Ra,b
= c + c′ρa,b +

1
2
ρ2

a,b

(−c + 2c2 − c3 + c′ − 3cc′
)
, (4.10)

where reρa,b is the distance of the plates in the plane z = 0 from the
axis (ρa < 0; ρb > 0).

In order to realize the required radii qre, Herzog shunts [42] (see
below) should be fitted to both ends of the sector field, so that the
effective field boundaries coincide with the contours given by the values
of q.

Note: For the special case c = 2 (see Fig. 2.17) the coefficients κik

and λik (4.9) cannot be used because most of the coefficients go to
infinity. It requires a separate integration of the equation of motion
for the trajectory. The same applies for the special case c = 0.4 for the
axial coefficients because the factor k2 goes to infinity. Since these cases
are not important, their coefficients κik and λik are not given here.

4.3 Spherical Condenser

Inserting c = 1 into the coefficients of (4.9), the image aberrations of
spherical condensers are easily calculated.

For example, for a 180◦ spherical condenser with concentric elec-
trodes (c′ = −1; Fig. 2.13) the aberration is found to be yαα = reκααα2

with καα = −2, while yββ = reκβββ2 = 0, since κββ = 0. A 90◦ spher-
ical condenser with symmetric imaging (Fig. 2.12) has the aberrations
yαα = −5reα

2, yββ = reβ
2, so that the combined aberration turns out

to be 6reα
2, when the particle beam is confined by a round aperture

so that β = α. When values of c′ �= 1 and curved end faces are admit-
ted, the aberrations can be modified. It turns out, however, that it is
not possible, by a judicious choice of c′ and q1, q2 to correct both the
α2 and β2 aberrations simultaneously. However, they can be made to
coincide at the value yαα = yββ = −2reα

2. This is the case for c′ = 0.8
with planar end faces (q1 = q2 = ∞) (Fig. 4.6). This is only a third of
the former value with concentric spherical plates, which means three
times higher luminosity of this partly corrected sector field. Only the
median equipotential surface is spherical (c = 1), while the electrode
surfaces are slightly toroidal.

The same value yαα = yββ = −2reα
2 can be obtained with exactly

spherical electrode surfaces (c′ = −1) but curved end faces, whereby
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Fig. 4.6. Cross section of modified spherical condenser with slightly toroidal elec-
trode surfaces. The median equipotential surface is spherical, while the axial curva-
tures of the electrode surfaces are excentric

Fig. 4.7. Sector field with spherical electrode surfaces and curved end faces

the curvature of the end faces has to be q1 = q2 = q = −3. The radius
of curvature is then Q = qre = −re/3 (Fig. 4.7).

With a 180◦ spherical condenser the two aberrations can be made
equal when c′ = 0.5. Then they have the value yαα = yββ = −reα

2.
This is half the value as for a 90◦ sector field. Another example are
sector fields with spherical electrodes (c′ = −1) and symmetric imaging
(l1 = l2 = l = re cot (φ/2)), which have entrance and exit faces with
curvatures centered at the source and image points (q1 = q2 = −l/re)
(Fig. 4.8). They have no β2 aberration, only an α2 aberration. This
could be utilized in applications where the axial acceptance angle β
can be made substantially larger than the radial one α.

4.4 Cylindrical Condenser

The aberrations of cylindrical condenser sector fields are found using
the coefficients of (4.9) with c = 0, so that k1 = (8 − c′)/3; k2 = −c′/2.
When the electrodes have exactly cylindrical surfaces, c′ = 0, too. In
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Fig. 4.8. When the centers of curvature of the end faces coincide with the object
and image points the β2 aberration becomes zero

Fig. 4.9. Image aberration yββ of cylindrical condenser causes the image line to be
slightly curved

this case, e.g. the α2 aberration with the 127◦ sector field (Fig. 2.7),
where l1 = l2 = 0, is found to be yαα = −1.33reα

2, while yββ = −reβ
2.

For a 90◦ condenser (Fig. 2.6), (4.7) and (4.8) yield, in the case of
the image at the exit boundary yαα = −3.27reα

2, yββ = −0.81reβ
2;

in case of symmetric imaging yαα = −1.82reα
2, yββ = −reβ

2. In the
case of symmetric imaging yββ is always −reβ

2, independent of φ. Since
there is no focusing in the z direction , the yββ aberration means that
the particles starting from a point source are focused in the image plane
in a line which is slightly curved (Fig. 4.9). When the object is a slit
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extended in the z direction, these curved lines are superimposed. As
the above examples show, the α2 aberration is usually larger than the
β2 aberration, α and β being equal, and since the β2 aberration has
the same sign as the α2 aberration, it does not matter.

In special cases, the α2 aberration could be modified by choosing
c′ �= 0, or by curving the entrance and/or exit faces. Conditions with
c′ �= 0 are obtained when only the median equipotential surface is
exactly cylindrical, while the electrode surfaces are slightly toroidal
having opposite curvatures [35].

4.5 Uniform Magnetic Sector Fields [36–38]

The second-order angular aberrations of the image of a point source
can be written as follows:

yαα = rm

(
µααα2 + µαuαu + µuuu2

)
+ l2

(
νααα2 + ναuαu + νuuu2

)
(4.11)

yββ = rm

(
µβββ2 + µβvβv + µvvv

2
)

+ l2
(
νβββ2 + νβvβv + νvvv

2
)

(4.12)

where, as in the case of electrostatic sector fields, u and v are the dimen-
sionless radial and axial distances from the optic axis: u = r/rm − 1 =
αl1/rm; v = z/rm = βl1/rm. In order to influence the radial aberra-
tions, the entrance and exit field boundaries can be curved (Fig. 4.10).
The coefficients µik and νik are

µαα = −µδ +
1
2
µ2

α

(
1 + t22

)
µαu = µαµu

(
1 + t22

)
+ (µu − 1) t1

µuu =
1
2
νu (µ1 + µut2) +

1
2q1c

3
1

µα

ναα = −1
2

(
µ2 + ν2

αt2
)

+
1

2q2c3
2

µ2
α

ναu = νu (t1 − ναt2) +
1

q2c3
2

µαµu
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Fig. 4.10. Magnetic sector field with curved entrance and exit faces

νuu = −1
2
ν2

ut2 +
1

2q1c3
1

να +
1

2q2c3
2

µ2
u

µββ = −µδ − 1
2

(
1 + t22

)
φ2

µβv = (1 − µu) t1 −
(
1 + t22

)
(1 − t1φ)φ

µvv = −µδt
2
1 +

1
2

[(
1 + t21

)
µu + µαt31 −

(
1 + t22

)
(1 − t1φ)2

]
− 1

2q1c
3
1

µα

νββ = −νδ + t22φ

(
1 − 1

2
t2φ

)
− 1

2q2c3
2

φ2

νβv = t1 (−νu + t2) + t22 (1 − 2t1φ) − t32φ (1 − t1φ) − φ

q2c
3
2

(1 − t1φ)

νvv = −νδt
2
1 −

1
2
µ1

(
1 + t21

)
+

1
2
να

(
1 + 2t21

)
t1 − t1t

2
2 (1 − t1φ)

− 1
2
t32 (1 − t1φ)2 − 1

2q1c
3
1

να − 1
2q2c

3
2

(1 − t1φ)2

(4.13)
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with the abbreviations

µα = sinφ, µδ =
1
2

(1 − cos φ) , µu =
cos (φ − ε1)

cos ε1
,

µ1 =
sin (φ − ε1)

cos ε1
, µ2 =

sin (φ − ε2)
cos ε2

,

να =
cos (φ − ε2)

cos ε2
, νu = −sin (φ − ε1 − ε2)

cos ε1 cos ε2
,

νδ =
1
2

[sin φ + t2 (1 − cos φ)] ,

t1 = tan ε1, c1 = cos ε1, q1 = Q1/rm(entrance curvature)

t2 = tan ε2, c2 = cos ε2, q2 = Q2/rm(exit curvature).

As an example [39] for a 90◦ sector field with ε1 = ε2 = 0 and curved
concentric entrance and exit boundaries, Q1 = Q2 = rm (Fig. 4.11),

Fig. 4.11. Uniform magnetic sector field with zero α2 aberration. The radius of
curvature of the end faces equals rm (Q1 = Q2 = rm)
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Fig. 4.12. Symmetric stigmatic imaging uniform magnetic sector field with cor-
rected α2 aberration. φ = 90◦, ε1 = ε2 = 26.6◦, f = 4/3rm, g = p = 2/3rm, L1 =
L2 = 2f, Q1 = Q2 = 2.8rm (comp. Fig. 3.12)

the α2 aberration becomes zero, using the above coefficients. The
radial β2 aberration, however, will be yββ = − (

3 + π + π2/4
)
rmβ2 =

−8.61rmβ2, so that a point source is imaged in a curved line (comp.
Fig. 4.9).

For a stigmatically imaging 90◦ sector field with tan ε1 = tan ε2 =
0.5 (Fig. 3.12), the α2 aberration turns out to be yαα = −4rmα2, while
the radial β2 aberration is yββ = −9rmβ2. By applying curvatures to
the boundaries, the α2 aberration can be made to vanish. This is the
case with Q1 = Q2 = 2.8rm (Fig. 4.12). The β2 aberration, however,
increases then to yββ = −13rmβ2. The radial acceptance angle α can
thus be made considerably larger than the axial angle β. In view of
this, it is advantageous that the radial angle extends in the direction
of the pole piece gap, while the axial angle is confined by the pole
pieces.

4.6 Non-Uniform Magnetic Sector Fields [20–23,40, 41]

The aberration coefficients for magnetic sector fields with conical pole
faces and entrance and exit axes normal to the boundaries are, using
these abbreviations:
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Setting n = 0 yields the coefficients for the uniform magnetic sector
field with normal entry and exit axes (t1 = t2 = 0).

With symmetric stigmatic imaging, in Table 4.1 values of the source
and image distance l of the dispersion at the image position yγ,δ and
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Table 4.1. Aberrations of stigmatically imaging sector fields (n = 1/2) for various
sector angles

φ l/rm yδ,γ/rm (γ + δ) yαα/rmα2 yββ/rmβ2

90◦ 2.28 2.0 4.13 −7.55
127.3◦ 1.41 2.0 1.26 −2.66
180◦ 0.70 2.0 −0.21 −1.05
254.6◦ 0 2.0 −0.67 −0.67

of the image aberrations yαα and yββ are listed for various sector fields
with straight boundaries having various sector angles φ. One can see
that a 180◦ sector field has rather low aberrations.

The aberrations of the stigmatically imaging fields of the wedge type
(see Figs. 3.24, 3.25) have been computed numerically. For the 180◦
deflection field, the α2 aberration is zero [25], while the β2 aberration
can be derived from published values [27] as yββ = 1.1ρmβ2, where
ρm is the mean deflection radius of the central trajectory. Using ρm

as scaling parameter makes it easier to compare with the other sector
fields, where the deflection radius of the central trajectory rm is used
as a scaling parameter. For the 90◦ wedge type field, the α2 aberration
was found to be yαα = 4.5ρmα2 and the β2 aberration yββ = 9.6ρmβ2.
It should be noted that these values do not contain fringe field effects,
which probably influence the values for the β2 aberration.
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Fringe Field Confinement

Summary. Examples for fringe field confinement of electric and magnetic sector
fields are presented.

With electrostatic and magnetic sector fields, the field strength at the
entrance and exit boundaries does not drop sharply from the value in-
side the gap to zero outside, but drops gradually. In order to confine this
transition region in a controlled way, so-called “Herzog shunts” (also
called “field clamps” in the literature) are usually applied [42]. They
define an effective field boundary (“ersatzfeldgrenze”), where the field
can be assumed to be cut off sharply as far as first-order optical prop-
erties are concerned. Second-order effects concerning image aberrations
are not eliminated by Herzog shunts.

With electrostatic sector fields, Herzog shunts can be chosen in
such a way that the “ersatzfeldgrenze” coincides with the geometric
field boundary given by the deflection angle φ. An example is shown
in Fig. 5.1. With curved field boundaries the shunts are to be shaped
accordingly.

For the general case that the distance ξ should be zero, Fig. 5.2
shows the slot widths and distances of Herzog shunts in relation to the
plate distances of electric sectors. For very narrow slots d = 0.52 k.

In the case of magnetic sector fields the shunts have to be made
out of mild steel like the pole pieces. It is not advisable to choose a
geometry where the ersatzfeldgrenze coincides with the pole piece end
faces because the Herzog shunt would be too close to the pole pieces
causing a magnetic field strength higher across the distance d than in
the gap, and thus enhancing the danger of saturation in the pole piece
edges. In order to keep the field strength across the distance d lower
than within the gap, the distance d should be larger than half the gap
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Fig. 5.1. “Herzog shunt” with electrostatic sector field. With b = 2
3
k, d = 1

3
k,

a = b, c ≥ 5b the “ersatzfeldgrenze” coincides with the geometric end face given by
φ. The distance ξ is zero

Fig. 5.2. With a certain choice of distance d and slot width 2b of Herzog shunts
in relation to plate distance 2k of electric sectors the effective field length coincides
with the real one. The curves show b as function of d for thick (upper curve) and
thin (lower curve) Herzog shunts
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Fig. 5.3. “Herzog shunt” with magnetic sector field. With b = k, d = 1.25k, a = b,
c ≥ 5b, the distance ξ = 0.5k

width k. And in order to guide the stray field lines between the pole
pieces on the shortest possible way through the shunt, thereby avoiding
saturation effects at higher field strengths, a form with a horseshoe-like
cross section as shown in Fig. 5.3 is preferable. With non-uniform fields
in the gap the shunts should be shaped in such a way that the rela-
tive dimensions are the same at each cross section through the field
boundary.
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Applications

Summary. Various examples of applications are shown, such as combination of
light optical with electrostatic lenses, electrostatic deflectors and energy analyzers,
elimination of image aberrations of sector fields, and a combination of a lens with
magnetic and electric sector fields to form a mass spectrometer.

A.1 Emission Lens Combined
with Optical Mirror Objective Lens

Emission lenses are described schematically in Sect. 1.10. Figure A.1
shows an actual emission lens with three electrodes (comp. Fig. 1.34),
which was designed and constructed for an electron emission micro-
scope [43]. The particular conical shape of the electrodes was chosen in
such a way that a light optical microscope objective lens of the reflect-
ing type could be accommodated. It comprises two nearly concentric
spherical mirror surfaces, a concave and a convex one, which can be
used either for viewing the sample surface or to irradiate the sample
with UV light for electron emission. The surface can also be imaged by
electrons which are directed from above through the lens, decelerated
to low energies, and scattered and diffracted from the surface.

Figure A.2 shows an equipotential plot [44] of the emission lens
field for the condition that the emitted electrons, accelerated by 15 kV,
image the surface to infinity. On the left-hand side the axial potential
distribution is shown (comp. Fig. 1.34), consisting of a nearly uniform
acceleration field followed by a decel–accel lens. The acceleration
electrode and the end electrode are at the same potential, but because
of the field penetration from the center electrode the electrons have
attained only about two thirds of the final energy when they pass
through the acceleration electrode. Thereafter they are decelerated to
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Fig. A.1. Emission lens combined with mirror objective. Acceleration from sample
(28) to grounded first electrode (26a) through center electrode (26d) to grounded
third electrode (26c). The center electrode is held between six 10 mm sapphire balls
(26e) for centering and insulation. The spherical mirrors (50a, 50b) are adjustable
relative to each other axially and laterally. For UV irradiation from above the mirror
(52) for visual observation is swung out of the way. The sample surface can be imaged
either with photoelectrons or with scattered and diffracted electrons arriving from
the above (12)

about 2 keV within the center electrode and then accelerated to the
final energy of 15 keV.

A.2 Combined Objective and Emission Lens

An electrostatic lens of similar design as the emission lens described
above, also incorporating a mirror type microscope objective for
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Fig. A.2. Field contour plot of emission lens imaging the surface to infinity. The
equipotential lines are 1,000 V apart. The backfocal length is 11 mm. The plot to
the left shows the axial potential distribution

viewing, is shown in Fig. A.3 [45]. It was designed for scanning sec-
ondary ion mass spectrometry (SIMS), a method of surface characteri-
zation, where a focused energetic primary ion beam scans the surface as
in scanning electron microscopy (SEM). The surface emits secondary
ions with low energy, which are subsequently accelerated and mass
separated by a mass spectrometer. The surface can thus be imaged in
the “light”, so to speak, of one chosen particular elemental or molecu-
lar mass. In this design, the secondary ions are accelerated backward
through the lens which focuses the primary beam.

The advantage of this arrangement is that the focal length of the
lens focusing the primary beam can be very short, facilitating a small
spot size with optimal beam current. The secondary ion beam is de-
flected out of the primary beam axis above the lens arrangement. This
is possible because the energy of the secondary beam is much lower
than that of the primary beam. The conical shapes of the three lower
electrodes offer minimal surfaces of exposure as “seen” from the an-
alyzed sample area. This minimizes background signals and memory
effects due to particles reflected and material sputtered from them.

There are two modes of operation possible: primary and secondary
ions of equal or of opposite polarity. Figures A.4–A.10 show axial
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Fig. A.3. Combined electrostatic objective and emission lens with light micro-
scope and provision for scanning electron microscopy with a high-energy electron
beam (SEM)

potential distributions and ray tracings for these two modes. The con-
ditions are chosen in such a way that a primary parallel beam enters
with an energy of 3.3 keV, while the secondary beam leaves with an
energy of 1 keV. In the case of equal polarity the primaries hit the sur-
face with an energy of 2.3 keV, while in the case of opposite polarity
the impact energy of the primaries is 4.3 keV. For the primary beams,
Figs. A.6 and A.9, the spacings between the rays are chosen in such a
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Fig. A.4. Geometry of the electrodes of the combined lens as used for the computer
ray tracing

Fig. A.5. Axial potential distribution, case of equal charge polarity of primary and
secondary particles
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Fig. A.6. Focusing of the primary beam, case of equal charge polarity. Focal length
8mm (radial scale different from axial one)

Fig. A.7. Focusing of the secondary beam, case of equal charge polarity
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Fig. A.8. Axial potential distribution, case of opposite charge polarity of primary
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Fig. A.10. Focusing of the secondary beam, case of opposite charge polarity

way that the total beam with round cross section and uniform current
density is subdivided into six portions with equal current.

The secondary beam rays shown (Figs. A.7 and A.10) are computed
as starting with an initial energy of 5 eV into the half-space. The start-
ing angles are chosen such that with a cosine emission distribution the
total emission current is subdivided into six equal fractions. As secon-
daries not only ions can be used, but also electrons.

In the case of opposite charge polarity the secondary beam leaves
the lens essentially parallel, while in the case of equal charge polarity
the secondary beam forms a focus above the lens. Therefore, an einzel
lens is positioned above this focus, which makes the secondary beam
parallel. The effect of this einzel lens on the primary beam is very
weak, because of its higher energy, and can be easily compensated by
adjustment of the main lens electrode potential.

These solutions were found by trial and error, following analytical
calculations with the transfer matrix method [46]. Other solutions are
of course possible. The potentials applied to the electrodes scale linearly
with the primary beam energy.
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A.3 Dynamic Emittance Matching [47]

In a scanning microprobe with charged particles, where secondary
charged particles are used to characterize the sample surface, it is im-
portant that these secondaries are transferred to the analyzer, e.g. a
mass spectrometer, with optimal efficiency. An analyzer, such as a mass
spectrometer with a certain mass resolution, has a certain acceptance,
defined as area of the entrance slit times the solid angle accepted by
the analyzer.

In order to make the sensitivity as high as possible it is important
to transfer as many as possible of the secondaries into the acceptance
of the analyzer.

The emittance of the secondaries is defined as the emitting area
times the solid angle filled by the secondaries after acceleration. With
suitable transfer optics the secondary beam emittance can be matched
with the analyzer acceptance such that the largest possible fraction of
the secondaries is accepted by the analyzer. With a scanning primary
beam it is obvious that the instantaneous emittance of the emitting
spot is much smaller than the emittance of the whole scanned area. By
matching the instantaneous emittance with the analyzer acceptance
a huge advantage in overall transmission of the secondaries can be
realized, resulting in a corresponding gain of sensitivity.

How this can be done is shown schematically in Fig. A.11 [48]. The
transfer optics images the emitting spot to the position of the entrance
slit. A deflector positioned in the back-focal plane of the transfer op-
tics, where the secondary ion beam crosses the axis, is activated in
synchronism with the scanning of the primary beam, so that behind
the deflector the secondary beam stays steady on axis. This “unscan-
ning“ of the secondary beam is done in the direction normal to the
drawing plane, too.

Another advantage of dynamic emittance matching is that the field
of view (diameter d1 in Fig. A.11) is independent of the analyzer
acceptance.

A.4 Energy Analyzer for Parallel Beam
with Coinciding Entrance and Exit Axes

Electrostatic energy analyzers such as cylindrical or spherical sector
fields have a curved optic axis. With certain applications, however, a
straight optic axis is desirable or even necessary.
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Fig. A.11. Schematic diagram of secondary ion transfer from sample to mass spec-
trometer, (a) static, (b) with “dynamic emittance matching”. δ1, emitting spot
diameter; α1 =

√
V1/Ua, maximal aperture angle of ions with initial energy eV1

accelerated by voltage Ua; δ2, diameter of image of δ1 including aberration due to
acceleration field [49]; d2, diameter of image of d1; α2, maximal aperture angle of
image δ2

In the following, such a device is described [50]. It comprises four
equal cylindrical sector fields, the first two of which deflect the beam
in opposite directions, while the second equally constructed pair brings
the beam back so that the exit axis coincides with the entrance axis
(Fig. A.12). Between the two pairs the beam is energy dispersed so that
a slit can be placed there transmitting only a certain energy bandwidth
out of a beam arriving with different energies. The condition for optimal
performance is that the incoming parallel beam has a focus at the
position of the slit. In other words, the second sector field has to image
the focus of the first sector field to the slit.

The geometry of the fringe field confinement is chosen in such a
way that the effective condenser length coincides with the real one (see
Chap. 5). Herzog shunts as shown in Fig. 5.1, however, are applied only
at the entrance and exit of the assembly. Between the first and second
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Fig. A.12. Energy analyzer consisting of four equal cylindrical sector fields, with
coinciding entrance and exit axes

Fig. A.13. Equipotential distribution between the first and second sector field

sector fields it is not necessary to place a Herzog shunt if the distance
is chosen correctly. In Fig. A.13 the equipotential distribution between
these two sector fields is sketched. There is a planar equipotential sur-
face in the middle between the sector fields, which is equivalent to a
thin diaphragm with a narrow slot. Therefore, the ratio d/k = 0.52
(see Fig 5.2). Between the second and the third sector fields a thin di-
aphragm with the narrow energy slit is placed. Therefore, the ratio d/k
is again 0.52.

Now, we can apply (2.24) for the imaging of the focus of the first
sector field, F1, where the incoming parallel beam would be focused in
the absence of the second sector field, to the position of the energy slit.
The focus F1 is the virtual object for the second sector field. Thus, as
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one can see from Fig. A.12, the object distance of (2.24) becomes

−L1 = f − 2p − 2d, and we calculate

L2 =
2 (p + d) − f

2 (p + d)/f − 2
(A.1)

This image distance has to be equal to p+d, so that the image is focused
at the distance p + d from the exit principal plane of the second sector
field to the position of the energy slit. Thus, we have the condition

p + d =
2 (p + d) − f

2 (p + d)/f − 2
.

It can be written as

(p + d)2 − 2f (p + d) + f2/2 = 0.

This can be solved for (p + d) with the result

p + d = f

√
2 ± 1√

2
.

By substituting d = 0.52 k we have

d = 0.52 k = f

√
2 ± 1√

2
− p,

and with (2.20) and (2.23)
√

2 ± 1
2 sin

(√
2φ

) − 1√
2

tan
(

φ√
2

)
= 0.52 k. (A.2)

Solutions for this condition are easily found by trial and error. In prac-
tice, reasonable values of k/r are assumed and different values of φ are
tried until the correct one is found. As the first term of (A.2) implies,
there are two solutions, one with the plus sign and one with the minus
sign.

Solutions with the minus sign are

k/r = 0.1 → φ = 29.0◦

k/r = 0.08 → φ = 29.5◦

k/r = 0.06 → φ = 30.1◦

In Fig. A.12 the solution with φ = 30◦, k/r = 0.063 is sketched.
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The corresponding solutions with the plus sign are

k/r = 0.1 → φ = 92.4◦

k/r = 0.08 → φ = 93.0◦

k/r = 0.06 → φ = 93.6◦

Choosing the more convenient sector angle φ = 90◦ would result in a
gap spacing of 2k = 0.35 r. This is too large. Therefore, one can drop
the condition that the energy slit be placed at the distance d behind
the second sector field. Instead a Herzog shunt, as at the entrance of the
first sector field, can be placed there and the energy slit at the distance
where the image of F1 is formed. This distance can be calculated with
(A.1), (2.20) and (2.23) and results, with k = 0.1 r, as L2 = 1.56 r;
L2−p = 0.13 r. Such an assembly is sketched in Fig. A.14. There occurs
an intermediate focus within the first sector field (at a 63.6◦ deflection
angle), which is then imaged to the energy slit.

For the imaging ratio of some distant object to the energy slit the
value of the combined focal length f∗ of the first two sector fields must
be known. It can be obtained from the well known formula for two
lenses in series

1
f∗ =

1
f1

+
1
f2

− D

f1f2
,

where D is the distance between the lenses. In our case, the dis-
tance between the two principal planes has to be taken, 2 (p + d), and

Fig. A.14. Energy analyzer consisting of four equal cylindrical sector fields with
coinciding entrance and exit axes
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f1 = f2 = f . Thus we have

r

f∗ = 2
r

f
− 2

p + d

f2
r = 2

r

f

(
1 − p + d

f

)
. (A.3)

In the case of φ = 30◦ (Fig A.12) we obtain f∗ = 0.74 r, and with
φ = 90◦ (A.3) yields f∗ = −0.67 r. The minus sign in this case does not
mean that the combination acts as a diverging lens, but stems from the
fact that an intermediate image is formed. For the imaging ratio from
a distant object to the energy slit only the absolute value |f | = 0.67 r
plays a role.

The energy dispersion of the two cases can be obtained by applying
(2.18) to the second sector field. Charged particles entering the first
sector field on the optic axis with energy eV0 (1 + δ) will be deflected
from the deflection center by the angle α1 = −λδ. The minus sign
applies because of the opposite deflection in the two sector fields. This
is the entrance angle α1 in (2.18); the object distance is L1 = 2 (p + d).
We thus have

yδ = L1 (−λδ)+L2 [(1 − L1/f) (−λδ) + λδ] = L1 (L2/f − 1)λδ. (A.4)

Now we consider the two cases φ = 30◦ and φ = 90◦. For the first case,
with L2 = p + d and k = 0.063 r, (A.4) yields

yδ/r = −0.43λδ = −0.21 δ, (A.5)

and for the second case, with k = 0.1 r and L2 = 1.56 r, (A.4) yields

yδ/r = 2.23λδ = 1.26 δ. (A.6)

The negative sign of the first case shows that the energy dispersion of
the first sector field is predominant, partly counteracted by the second
sector field. The positive sign of the second case indicates that in this
case the energy dispersion of the second sector field is predominant. It
is also much larger than in the first case, which is a consequence of the
much larger sector angle φ.

Thus, in order to achieve a certain energy resolution, the 90◦ version
can be scaled down, meaning a smaller radius r, as compared to the 30◦
version. The latter assembly, however, is slimmer. So, depending on the
requirements of energy resolution and geometry, one of the two versions
can be chosen. Such an energy analyzer can of course be designed not
only for a parallel beam, but also for a diverging or converging beam.
The parameters must then be calculated accordingly.
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A.5 Elimination of Transverse Image Aberrations
of Sector Fields

As described in Chap. 4, electric and magnetic sector fields form images
with transverse aberrations. When such fields are not used for their
dispersive properties but as mere deflectors, these aberrations can be
eliminated as shown in Figs. A.15 and A.16 [43].

If the beam crossover is formed in the middle of the sector field, the
second half of it cancels the aberrations, so that the virtual crossover
as seen from the exit of the sector is aberration-free, and a subsequent
lens will form an image of the virtual crossover free of transverse aber-
rations.

If a magnetic sector field is used for mass separation, a slit is placed
at the crossover in the middle of the sector. An image formed by a sub-
sequent lens will have no energy dispersion. Even the different isotopes
of an element will be reunited by the lens when the separating slit is
made wide enough to let them pass.

Fig. A.15. Elimination of α2 aberration of electric or magnetic sector fields. Shown
are cases where Barber’s construction can be applied (also in Fig. A.16)
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Fig. A.16. Elimination of transverse chromatic aberration of electric or magnetic
sector fields

A.6 Energy-Focusing Mass Spectrometers

The simplest mass spectrometer, also the oldest historically, is a mag-
netic sector field. Since a magnetic field disperses not only with respect
to mass but also with respect to energy (see (3.4)), its mass resolving
power is limited by the energy spread of the ions to be separated. The
limitation is reached, when the relative energy spread ∆V /V = δ of
the ions becomes as large as the relative mass separation ∆M/M = γ
of a neighbouring mass, so that the two different masses can pass the
exit slit.

This situation can be resolved by the addition of an electrostatic
sector field which is applied in such a way that it cancels the energy dis-
persion of the magnetic field. An example of such a “double-focusing”
(= angle and energy focusing) mass spectrometer is described in the
following [51]. Figure A.17 shows a uniform magnetic sector followed
by a cylindrical condenser sector with opposite deflection, both with a
sector angle of φ = φe = 30◦ and equal radii r = re = 12 cm.

In order to find the distance of energy focusing, in the figure des-
ignated as L′′

e , from the exit principal plane, we apply (2.18) to the
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Fig. A.17. Energy focusing in a “double-focusing” mass spectrometer

electric sector field. The object distance L1 (L′
e in the drawing) is D,

the distance from the exit principal plane of the magnetic sector to
the entrance principal plane of the electric sector. The entrance angle
α1 = −νδ, the energy dispersion of the magnetic sector – the minus
sign because of the opposite deflection – and the exit ordinate ye (Ye

in the drawing) must be zero for energy focusing.
Thus we have

D (−νδ) + L′′
e [(1 − L1/fe) (−νδ) + λδ] = 0.

From this we obtain

L′′
e =

D

D/fe + λ/ν − 1
. (A.7)

The distance D is chosen D = 0.59r. The other terms result with (2.20),
(2.21) and (3.7): fe = 1.05r; λ = 0.48; ν = 0.25. With these figures we
obtain L′′

e = 0.40 r.
The mass separating slit is placed at the distance L′′

e . The angular
focus, i.e. the image of the entrance slit, must coincide with the energy
focus. Calculating backwards from the exit slit, using (2.24) and (3.8)
for the two sector fields yields a negative object distance L′ = −3.25 r
(Fig. A.18). This means that the lens action of the two sector fields is
too weak to form a real image at the exit slit of an entrance slit placed
somewhere in front of the magnetic field. An einzel lens is therefore
placed in front of the magnetic field, which can be tuned to image the
entrance slit to the exit slit. In the direction normal to the deflection
plane, the einzel lens also focuses the beam, so that no loss due to cutoff
occurs in that direction between the einzel lens and the detector placed
behind the exit slit.
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Fig. A.18. Angle focusing with the aid of an einzel lens placed in front of the
magnetic sector field

Fig. A.19. Mass scanning with constant magnetic field by ramping the electric field

Most double-focusing mass spectrometers are built with the se-
quence ion source – electric sector–magnetic sector–detector. The re-
versed sector field sequence applied here has the advantage that the
mass separation occurs relatively far from the detector, thereby min-
imizing the background signals caused by scattered ions. Another ad-
vantage of the reversed field sequence is, that for a limited relative
mass range, electric peak scanning or switching with the electric sector
field is possible (Fig. A.19). Most of the elemental isotopes can there-
fore be scanned or switched with constant magnetic field by ramping or
stepping the deflection voltage of the cylindrical condenser. Magnetic
scanning is usually much slower, which is a disadvantage with certain
applications.
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